
www.manaraa.com

The Pennsylvania State University

The Graduate School

The Department of Industrial and Manufacturing Engineering

A MATHEMATICAL FRAMEWORK FOR SEMANTIC WEB SERVICE

COMPOSITION WITH APPLICATION TO MODULAR PRODUCT DESIGN

A Dissertation in

Industrial Engineering

by

Jung-Woon Yoo

 2010 Jung-Woon Yoo

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2010

www.manaraa.com

UMI Number: 3442968

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3442968

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

The dissertation of Jung-Woon Yoo was reviewed and approved* by the following:

Soundar R.T. Kumara
Allen E. Pearce/Allen M. Pearce Chaired Professor of Industrial Engineering
Dissertation Advisor
Chair of Committee

Dongwon Lee
Associate Professor of Information Sciences and Technology

Jose A. Ventura
Professor of Industrial Engineering

Timothy W. Simpson
Professor of Industrial and Mechanical Engineering

Paul Griffin
Department Head and Professor of Industrial Engineering

*Signatures are on file in the Graduate School

www.manaraa.com

iii

ABSTRACT

Web services applications prevail in mobile devices such as the iPhone and Blackberry as

well as among numerous networked computers. Web services are a state-of-the-art, leading

technology based on Service Oriented Architecture in the World Wide Web environment. Each

Web service is described in a standard language, such as WSDL (Web Service Definition

Language), and is published in a global registry called UDDI (Universal Description, Discovery,

and Integration). Individual users or software agents invoke Web services based on the Web

service descriptions registered with UDDI. A simple information or service request can be

fulfilled by a single Web service, but complicated requests cannot be satisfied by a single Web

service. Consequently, a composition of multiple Web services in an appropriate sequence is

required.

As the number of Web services increases in dynamic business environments, the

automation of Web service composition becomes an essential feature for commercial Web

services. Automatic Web service composition software should be able to consider not only

functional requirements, but also quality of service (QoS) aspects. Functional requirements force

the composition software to generate feasible solutions, while QoS aspects make the composition

software satisfy user objectives, such as cost, time, or reliability.

Web service composition problems can be classified in two ways: (1) syntactically and (2)

semantically. Semantic issues have recently presented challenges to Web service composition.

Due to insufficient understanding of semantics, Web service composition solutions can be

inferior, or even impossible to generate.

In this research, a mathematical solution framework that guarantees the optimal solution

to semantic Web service composition is introduced. The Integer Programming (IP) based

mathematical framework considers not only functional requirements but also QoS aspects of Web

www.manaraa.com

iv

service composition. Furthermore, the framework can incorporate semantics-processing

mechanisms into its IP formulation. The proposed approach guarantees the optimality of the

solutions from both syntactic and semantic perspectives.

Finally, a k-best solution method for Web service composition is presented. Using k-best

solutions provides a holistic view of the Web service composition solution space rather than a

myopic view that is focused only on the optimal solution. Knowing k-best solutions and the

summary statistics among them (such as the range of objective values) provides a broader view

when composing Web services.

Key words: Web service composition, Semantic Web, Integer Programming, quality of

service, k-best solution approach.

www.manaraa.com

v

TABLE OF CONTENTS

List of Figures .. viii

List of Tables ... vix

Chapter 1 Introduction ... 1

1.1 Introduction to Web Services ... 1
1.1.1 SOAP (Simple Object Access Protocol) ... 2
1.1.2 WSDL (Web Service Description Language) ... 3
1.1.3 UDDI (Universal Description, Discovery, and Integration) 4

1.2 Research Motivation .. 5
1.3 Problem Statement ... 8
1.4 Research Objectives and Contributions ... 8

1.4.1 Optimal solution framework ... 9
1.4.2 Semantics processing .. 9
1.4.3 k-best solution methods ... 10

1.5 Thesis Outline .. 10

Chapter 2 Problem Definition .. 12

2.1 Syntactic Web Service Composition .. 13
2.2 Semantic Web Service Composition .. 14

2.2.1 XML (Extensible Markup Language) ... 18
2.2.2 RDFS (Resource Description Framework Schema) .. 18
2.2.3 Ontologies: OWL (Web Ontology Language) .. 19

Chapter 3 Literature Review .. 22

3.1 Classification in Terms of Methodology .. 23
3.1.1 Logic-based methods ... 23
3.1.2 Mathematical programming methods .. 24
3.1.3 Other methods ... 25

3.2 Other Classifications .. 26
3.2.1 Optimal versus heuristic solution approaches ... 26
3.2.2 Semantic versus syntactic approaches ... 27
3.2.3 Functional requirements versus quality of service concerns 28
3.2.4 Parameter-level versus operation-level composition 29

3.3 Summary .. 29

Chapter 4 Solution Methodology ... 30

4.1 Integer Programming Formulation for Syntactic Web Service Composition 31
4.1.1 Domain definition ... 31
4.1.2 Problem classification ... 32
4.1.3 Variable definition ... 32
4.1.4 Formulation ... 33

4.2 Cutting Plane Methods for k-Best Solutions to Web Service Composition 38

www.manaraa.com

vi

4.2.1 A naïve cutting plane method .. 38
4.2.2 General cutting planes for k-best solutions ... 40
4.2.3 An improved cutting plane approach .. 42
4.2.4 A cutting plane approach that negates previous solutions 43
4.2.5 Elimination of only the current best solution .. 44
4.2.6 Analysis of k-best solutions .. 44

4.3 Integer Programming Formulation for Semantic Web Service Composition 45
4.3.1 Variable definition ... 46
4.3.2 Formulation ... 46

4.4 Experimental Results ... 48
4.4.1 Consideration of quality-of-service attributes ... 50
4.4.2 Consideration of semantics ... 50

4.5 Solution Optimality .. 51
4.6 System Architecture ... 52

4.6.1 Bootstrapping .. 52
4.6.2 Query processing ... 53
4.6.3 Execution ... 53

4.7 Summary .. 54

Chapter 5 An Application of Web Service Composition: Modular Product Design 55

5.1 Motivation .. 56
5.2 Background and Related Work .. 58
5.3 Methodology .. 62

5.3.1 Formal representation of components ... 62
5.3.2 Modular product design as an AI planning problem 65
5.3.3 Integer Programming (IP) formulation .. 68
5.3.4 SOA-based cyberinfrastructure to support global manufacturing 74

5.4 Case Study .. 77

Chapter 6 Conclusions and Future Research Plan ... 85

6.1 Research Summary .. 85
6.2 Contributions .. 86

6.2.1 Development of an optimal solution framework ... 86
6.2.2 Consideration of semantic relationships .. 87
6.2.3 Generation of k-best solutions ... 87

6.3 Future Research .. 88
6.3.1 Interactive Web service composition .. 88
6.3.2 Modular product design .. 88
6.3.3 Agent-based Web service composition ... 89
6.3.4 Collaborative medical services .. 89

Appendix A: An Example of IP Formulation for Web Service Composition 91

A.1 Objective Function .. 92
A.2 Constraints ... 92
A.3 Computation Results ... 100

www.manaraa.com

vii

Appendix B: Sample files from Web Service Challenge 2008 ... 101

B.1 Input WSDL File ... 101
B.2 Input OWL File ... 102
B.3 Input Query File .. 103
B.4 Output WSBPEL File .. 104

Bibliography .. 107

www.manaraa.com

viii

LIST OF FIGURES

Figure 1-1. Service Oriented Architecture ... 2

Figure 1-2. An example of Web Service Description Language ... 4

Figure 1-3. A motivating example: Urgent blood delivery .. 7

Figure 2-1. An example of invokable Web services .. 14

Figure 2-3. An RDF representation of triples .. 19

Figure 2-4. An example of OWL applied to a product catalog .. 21

Figure 3-1. Web service composition with functional and/or non-functional attributes 25

Figure 4-1. Cutting planes for k-best solutions .. 39

Figure 4-2. How the cut works to obtain the next best solution .. 40

Figure 4-3. Improved cutting plane approach for k-best solutions .. 42

Figure 4-4. Examples of k-best solutions ... 45

Figure 4-5. System architecture ... 52

Figure 4-6. A composition result in WSBPEL .. 53

Figure 5-1. Modular Product Design Framework for Global Manufacturing 58

Figure 5-2. Standardized Interfaces: Examples from a Hard Disk Drive 63

Figure 5-3. Machine-Readable XML Representation .. 64

Figure 5-4. Concept of Modularization and Interface-Oriented Modular Product Design 64

Figure 5-5. A simple functional model of a desktop PC .. 67

Figure 5-6. Overview of the Proposed SOA-based Cyberinfrastructure for Modular
Product Design ... 75

Figure 5-7. Optimal Solution from an IP-based Formulation .. 82

www.manaraa.com

ix

LIST OF TABLES

Table 3-1. Comparison of Representative Research to This Study ... 29

Table 4-1. Problem sizes of the test sets provided by WSC 2008 ... 49

Table 4-2. Composition results in terms of cost and number of Web services 50

Table 4-3. Solution existence when semantics were considered ... 51

Table 5-1. AI Planning Problems: Modular Product Design and Web Service
Composition ... 65

Table 5-2. Comparison of Proposed Design Cyberinfrastructure and Existing Design
Repository .. 76

Table 5-3. Parts Used in the Case Study .. 78

Table 5-4. Feasible Design Alternatives .. 83

www.manaraa.com

Chapter 1

Introduction

The objective of this dissertation is to develop a mathematical framework for semantic

Web service composition. This chapter introduces the problem domain, motivation and

contributions of this research, followed by the outline of this dissertation.

1.1 Introduction to Web Services

Web services is a state-of-the-art, leading method for providing a variety of real-time

technologies in the World Wide Web environment [1]. Recently, Web-based service providers

have created a central registry, or “yellow pages directory” of their technologies using UDDI

(Universal Description, Discovery and Integration). Individual users or intelligent software agents

who subscribe to the service providers can use the registered Web services for their own

purposes. Each Web service is described using standard languages, such as WSDL (Web Service

Definition Language), which describe the input and output of the Web service, and other

information such as transport protocol and message format. SOAP (Simple Object Access

Protocol) is the communication protocol between Web service providers and users over the

Internet.

A Web service is a software component that is not dependent upon a platform or

implementation methodology and can be [2]:

1) described using a service description language;

2) published to a registry (UDDI) of services;

3) discovered through a standard mechanism at runtime or design time;

www.manaraa.com

2

4) invoked through a declared API, usually over a network; and

5) composed with other services.

Web services are based on Service Oriented Architecture (SOA) [1], the state-of-the-art

information system architecture shown in Figure 1-1. The following describes the major

components of Service Oriented Architecture, which are essential for the implementation of Web

services.

Web Service Users Web Service Providers

UDDI

Publish WSDLs

Execute Web Services

Search
Web Services

• Send required input information

• Receive output information

getHotels

getFlights

getDirection

SOAP
Transportation

protocol

getHotels

getFlights

100.10.1.1

100.10.1.1

100.20.1.1

IP Addresses WS Names

100.10.1.1

getHotels

getFlights

Figure 1-1. Service Oriented Architecture

1.1.1 SOAP (Simple Object Access Protocol)

SOAP [3] was originally intended to provide networked computers with remote-

procedure call (RPC) services [4] written in XML (eXtensible Markup Language) [1]. As its

name implies, SOAP is a lightweight communication protocol that is widely used for e-business

transactions. A SOAP message consists of a header and a body. The header includes control

www.manaraa.com

3

information for the SOAP message, such as authentication and encoding, while the body includes

the actual content to be transferred from a sender to a receiver. One well-known SOAP message

pattern is SOAP RPC. It contains: (1) the destination address, (2) the name of the method to be

invoked, and (3) the input and output value.

1.1.2 WSDL (Web Service Description Language)

Web services use a de facto standard description language: Web Service Description

Language (WSDL), shown in Figure 1-2. WSDL is an XML [5] language for describing a

programmatic interface to a Web service [6]. The basic contents of a WSDL file for a Web

service are composed of input and output message formats, data types, network addresses, port

type, and binding information. Port type describes the operations provided by the service, and

binding describes communication protocols required to use the Web service. WSDL specifies the

name of the Web service (such as GetDirection or GetPhoneNumber), the data types of

input/output parameters (such as string or integer), the operations provided by the Web service

(such as GetRoute or GetTime), the communication protocol (such as SOAP), and the network

address in the form of a URL (Uniform Resource Locator).

www.manaraa.com

4

Input
Parameters

Output
Parameters

Operations

Figure 1-2. An example of Web Service Description Language

A Web service can be invoked through a stub code1

1.1.3 UDDI (Universal Description, Discovery, and Integration)

 that can be generated from the

corresponding WSDL file of each Web service. Such code generation is possible because of the

standardized format provided by WSDL. Furthermore, the standard mechanism enables software

agents to compose multiple Web services to answer complex queries that cannot be answered by

a single Web service.

The Universal Description, Discovery, and Integration (UDDI) specification [7] describes

a mechanism for registering and locating Web services [1]. UDDI is a platform-independent,

cross-industry framework designed to create a registry standard for Web service description and

1 A stub code, or skeleton code, is a piece of code generated from a Web Service Description Language
(WSDL) file or an Interface Definition Language (IDL) file. Most programming languages have SOAP
utility programs that are designed to generate stub code from a WSDL or IDL file.

www.manaraa.com

5

discovery, together with a registry facility that supports the publishing and discovery processes

[8]. Web services described in WSDL are published in a UDDI registry so that software agents or

individual users can discover them.

UDDI has three main components: white pages, yellow pages, and green pages [7].

UDDI white pages include business names, descriptions, contact information, and identifiers for

Web service providers; UDDI yellow pages include industries, products and services, and

geographical location information for Web service providers; UDDI green pages describe how

other businesses can conduct electronic commerce with the registered providers [1].

A Web services model is illustrated in Figure 1-1. First, providers describe their Web

services using WSDL and publish them on UDDI. Then users are able to find appropriate Web

services using UDDI. Since UDDI is used to store all WSDL files published by Web service

providers, users can find and download them. Once Web service users download the WSDL files,

they can generate stub codes and invoke the corresponding Web services. There is direct

communication between Web service providers and users.

1.2 Research Motivation

Simple requests, such as finding directions from City A to B, can be answered by a

single, atomic Web service, whereas complicated queries cannot be answered by a Web service.

For example, suppose that there is a car accident and a person is severely injured. A 911 control

center needs to find a way to deliver a requested amount of a specific blood type from a blood

bank to the closest transfusion-capable hospital. To answer such a complicated query, multiple

Web services would need to be invoked in an appropriate sequence. The sequence would need to

include branches and merges in the Web service invocation, which means that some Web services

would be invoked in parallel and others would be invoked in serial.

www.manaraa.com

6

The task of arranging relevant Web services to answer a complex query is called Web

service composition. Web service composition can be done manually [9]. However, as the

number of open Web services increases, and as a variety of emerging, new service requests

appear in the current competitive, complex, and changing business environment, automatic Web

service composition becomes an essential feature of commercial Web services.

To automate the composition of Web services, functional and non-functional

requirements must be satisfied. First, a functional requirement of the Web service composition

problem is that input parameters of a Web service must be satisfied in order to invoke it. Most

approaches from the previous literature have focused mostly on the functional aspects of

automation [10, 11]. In particular, logic-based approaches (such as description logics, theorem

proving, propositional satisfiability techniques, situational calculus, etc.) focus mostly on

functional requirements. Non-functional requirements of the Web service composition problem

such as invocation cost, response time, and provider reputation are often overlooked.

As Web services become more popular and better-utilized by individual users and

intelligent software agents, they will be inevitably commercialized. This will lead to significant

composition changes. Traditionally, matching parameters with the minimum number of Web

services required in order to meet functional requirements has been the primary way of

addressing the composition problem. However, considering both functional and non-functional

attributes together when solving Web services composition problems would likely produce

superior outputs.

Figure 1-3 illustrates the same blood delivery Web service composition problem

discussed earlier, with additional consideration for non-functional attributes. Suppose that in a

virtual medical industry UDDI, there would be five relevant Web services, each with a nominal

fee: WS-A: getHospital ($10), WS-B: getBlood ($10), WS-C: askDelivery ($10), WS-D:

getDirection ($10), and WS-E: getHospitalwithBloodBank ($50). If the main objective for the

www.manaraa.com

7

composition is to minimize the number of Web services invoked, then the best solution would be

to invoke only one Web service, WS-E at the cost of $50, which satisfies the parameter matching

requirement. The invocation of a single Web service, WS-E, would be sufficient since it is

provided by a hospital with a blood bank. On the other hand, if the main objective for the

composition is to minimize cost, the best solution would be to invoke four Web services, WS-A

and WS-B concurrently and then WS-D and WS-C sequentially, at the cost of $40. After securing

an available hospital and a blood bank with requested blood type available, a transportation

company would need to be hired to deliver the blood from the blood bank to the hospital.

WS-A: getHospitalWS-A: getHospital

WS-B: getBlood

Initial

Goal

WS-C: askDelivery WS-D: getDirection

Hospitals

Blood banks

Transportation companies

WS-E:
getHospitalWithBank

a. PatientInfo
b. BloodType
c. BloodAmount
d. TargetTime

Input
a. PatientInfo
b. BloodType
c. BloodAmount

Output

Input

Output

e. HospitalAddress
f. BloodBankAddress
g. DeliveryConfirmation

b. BloodType
c. BloodAmount

f. BloodBankAddress

Input

Output
a. PatientInfo

e. HospitalAddress

e: HospitalAddress
f: BloodBankAddress
g: DeliveryConfirmation

Input
d. TargetTime
e. HospitalAddress
f. BloodBankAddress

Output
g. DeliveryConfirmation

Input
e'. DestinationAddress
f'. SourceAddress

Output
j. EstimatedDeliveryTime
k. Direction

Figure 1-3. A motivating example: Urgent blood delivery

There could be other objectives for this example, such as minimal processing time or

maximum reputation if the situation is very urgent or requires high credibility, respectively. This

example clearly explains our claim that the best solution depends on the user’s objectives, which

www.manaraa.com

8

are non-functional attributes. Therefore, in this research, we propose a framework to address how

to incorporate such non-functional attributes into a software agent for Web service composition.

1.3 Problem Statement

This Web service composition problem is formulated as an Artificial Intelligence (AI)

planning problem. The AI planning formulation is denoted as 0(, ,)P t g= Σ , where 0t is an

initial state, g is a goal state and Σ is a state transition system. The state transition system

consists of three component; a set of states (T), a set of actions (A), and a state transition function

(:T A Tγ × →). The solution to the planning problem is a sequence of actions, 1 2, ,..., kw w w ,

where k is the index of the sequence. The corresponding sequence of state transitions can be

denoted as 1 0 1 2 1 2 1(,), (,),..., (,) .k k kt t w t t w t t w gγ γ γ −= = = = Therefore, the Web service

composition problem is stated as given 1 2, ,..., nw w w Web services, where n is the total number

of Web services, and given the initial knowledge of 0t and the goal knowledge of g, the goal of

this problem is to generate an execution sequence of Web services that optimizes a given

objective function.

1.4 Research Objectives and Contributions

The main objectives of this research are summarized as follows:

1) Develop a mathematical solution framework for obtaining the optimal solution to

Web service composition;

2) Develop semantics processing mechanisms for Web service composition; and

3) Develop k-best solution methods for Web service composition.

www.manaraa.com

9

These objectives, as well as the potential contributions of this research are discussed next.

1.4.1 Optimal solution framework

Much research has focused on heuristic approaches to Web service composition. This is

partially due to long solution times stemming from the highly complex nature of the problem. As

the query requirement increases, the solution generation becomes intractable. However, most

Web service composition applications, like AroundMe iPhone Apps, which use the current

location information of users, are being implemented during the design phase, rather than the run-

time phase. We strongly believe that our optimal framework can contribute to the identification of

potential composition solutions during the design process. Furthermore, our optimal approach is

expected to provide an evaluation guideline for heuristic approaches.

1.4.2 Semantics processing

Semantic issues are challenging problems that have recently surfaced in Web service

composition. Due to insufficient understanding of semantics, Web service composition solutions

can be inferior, or even worse, the algorithms may not be able to find any solutions at all. The

uniqueness of our approach to semantic issues is that all semantic relationships are incorporated

into the Integer Linear Programming (ILP) formulation, a significant departure from other

approaches in which relationships are pre-processed. Our approach guarantees the optimality of

the composition solutions both syntactically and semantically.

www.manaraa.com

10

1.4.3 k-best solution methods

Identifying k-best design alternatives provides a holistic view of the Web service

composition solution space rather than a myopic view, which focuses only on the optimal

solution. Suppose that the three best Web service (WS) composition solutions in terms of cost are:

WS-A, WS-B and WS-C ($100); WS-A, WS-B and WS-D ($101); and WS-A, WS-B, and WS-E

($120). If a decision maker considers only the optimal solution, the first composition solution will

be selected. However, if the provider of WS-D has a better reputation than WS-C, then the second

solution can still be attractive, since the cost difference between the top two solutions is small.

Although the reputation of Web service providers could be included as another decision making

criterion and a different optimization problem could be formulated, it may be simpler to evaluate

k-best solutions. Hence, knowing k-best composition solutions and the summary statistics among

them (such as the range of objective values), can broaden a decision maker’s view when

composing Web services.

1.5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 classifies Web service

composition problems into two categories, syntactic and semantic, and defines each problem in

detail. Background technologies and approaches (especially those related to Semantic Web

services composition) are introduced to explain how the proposed methodology works.

Chapter 3 reviews background literature related to Web service composition and

identifies the research gaps that this thesis addresses. Previous works are classified into logic-

based approaches and mathematical programming approaches in Section 3.1. Looking at the

literature in a different way, Section 3.2 classifies related papers on four dimensions: optimal

www.manaraa.com

11

versus heuristic solutions, semantic versus syntactic composition, functional requirements versus

quality of service concerns, and parameter- versus operation-level composition.

Chapter 4 proposes a mathematical framework for semantic and syntactic Web service

composition. Semantic and syntactic Web service composition problems are formulated using

Integer Programming. The mathematical formulation makes it possible to obtain the optimal

solution for Web service composition. Semantic relationships among input and output parameters

of Web services are also formulated in the proposed framework. Experimental results show the

performance of our approach, and the system architecture for Web service composition is

presented.

Chapter 5 introduces an application of Web service composition to modular product

design, creating an analogy between them. Differences between them are also analyzed and

reflected in the formulation.

Finally, Chapter 6 summarizes the contributions of this research and offers ideas for

future research topics.

www.manaraa.com

Chapter 2

Problem Definition

The Web service composition problem can be transformed into an AI planning

formulation [12, 13, 14]. An AI planning problem, P, can be represented as 0(, ,)P t g= Σ and

(, ,)T A γΣ = , where T is the set of states, A is the set of actions, :T A Tγ × → is a state transition

function, 0t is the initial state, and g is the goal state. A solution to P is a sequence of actions. In

Web service composition, known parameters correspond to the initial state, goal parameters

correspond to the goal state, the set of Web services corresponds to the set of actions, the set of

known parameters corresponds to the set of states, an invokable Web service with the known

parameters corresponds to input, and the parameters resulting from the Web service invocation

(output) correspond to the state transition function. Depending on the consideration of semantic

aspects, we can classify the problem into syntactic Web service composition and semantic Web

service composition. In this chapter, we define these two types of problems in detail.

www.manaraa.com

13

2.1 Syntactic Web Service Composition

The Web service composition problem and the Web service discovery problem (a special

type of Web service composition problem) can be defined as follows.

Definition 1. Web Service Composition Problem: Given PInitial and PGoal, where PInitial

is the set of parameters that are known at the outset, and PGoal is the set of parameters that are to

be obtained, the purpose of Web service composition is to find a sequence of the set of Web

services (W1, W2, …, WS) that can be simultaneously invoked at each stage, where S denotes the

index of maximal stage.

Definition 2. Web Service Discovery Problem: The Web service discovery problem is

a special case of the Web service composition problem where there is a solution at the first stage,

and W1 (the set of Web services in the first stage) consists of a single Web service. In other words,

a single Web service with PInitial satisfies PGoal.

In Figure 1-3, the solid line solution that consists of WS-A, WS-B, WS-C, and WS-D is

an example of the Web service composition problem, while the dotted line solution that consists

of WS-E is an example of the Web service discovery problem.

Figure 2-1 illustrates invokable Web services. Given the initial information of A and B,

Web service 1 can be invoked at the first stage since it requires the information of A and B, and

the information of C, D, and E is obtained. At the second stage, only Web service 2 is invokable

since it requires the information of A, C, and E that are already known. However, since Web

service 3 requires the information of H, but H is not known at this stage, the Web service is not

invokable. Note that the size of the knowledge base is non-decreasing. This characteristic is used

in the problem formulation.

www.manaraa.com

14

Web
Service

#1

Stage 1 Stage 2

A

B
E

D

C

A

E H

G

F

C

H
L

K

F

C
Web

Service
#2

Web
Service

#3

{ , }T A B= { , , , , }T A B C D E=
{ , , , , ,

 , , }
T A B C D E

F G H
=

:T State

Figure 2-1. An example of invokable Web services

2.2 Semantic Web Service Composition

Thus far, we have discussed Web service composition from a syntactic perspective. In

this section, we discuss Web service composition from a semantic perspective.

Figure 2-2 illustrates a semantic issue in Web service composition. “U.S. Address” and

“BloodAmount” are initial knowledge and “LocalBloodBankAddress” is goal knowledge, and

there are two Web services that perform the same function but are offered by different providers

at different costs. Intuitively, we see that “getBlood #1” can be invoked with the initial

knowledge. However, we assume that the “U.S. Address” data is inherited from “Address” data

based on the principles of object-oriented programming [15]. If Web service composition

software understands the inheritance relationship between “U.S. Address” and “Address” data,

and “PartAmount” is equivalent to “PartVolume,” then the composition software will select the

www.manaraa.com

15

cheaper solution of “getBlood #2” instead of “getBlood #1.” Such semantic relationships can be

described using a web ontology language, such as OWL [27]. This example clearly illustrates a

case in which considering semantics facilitates the discovery of a better solution, proving the

necessity of semantic consideration in Web service composition. Figure 2-3 illustrates the

semantic relationships of hierarchy and equivalence.

getParts
#1 ($20)

Address

Part
AvailabilityPartAmount

getParts
#2 ($10)

U.S. Address

Part
AvailabilityPartVolume

Service Provider: Visteon

Service Provider: Delphi
PartAmount

Given Knowledge

U.S. Address
PartType

PartType

PartType

Figure 2-2. An Example of Semantic Web Service Composition

www.manaraa.com

16

Class 0

Class 1-A Class 1-B

Inheritance

PartAmount PartVolume

(b) Equivalence

(a) Hierarchy

Class 2-D Class 2-EClass 2-CClass 2-BClass 2-A

Figure 2-3: Semantic Relationships in Web Service Parameters

To resolve semantic issues occurring during the Web service composition process, we

utilize the Semantic Web. The Semantic Web was proposed in 2001 by Berners-Lee et al. [16],

the first author credited with inventing the World Wide Web (WWW). The Semantic Web

represents the actual Web contents represented by the character strings in the current World Wide

Web (which are often meaningless to humans). The main idea behind the Semantic Web is to

create another dimension of the current Web that enables machines to comprehend the semantics

of Web content. Internet users can browse not only the World Wide Web but also the Semantic

Web, as illustrated in Figure 2-4.

www.manaraa.com

17

URL: psu.edu

Nittany Lions
vs

Boilermakers

URL: purdue.edu
Penn State

vs
Purdue

URL: umich.edu
Wolverines

vs
PSU IE

World Wide Web

URL: indiana.edu
Michigan

vs
Hoosiers

URL: cnn.com
The Hoosier State became

the swing state in the
Presidential election ……

<World Wide Web>

Semantic Web

Synonym

Hierarchy
Homonym

<Semantic Web>

Figure 2-4. The World Wide Web and the Semantic Web

The realm of the Semantic Web is not limited to cyberspace. Berners-Lee et al. [16]

predict that the Semantic Web will break out of the virtual realm and extend into the physical

world. There is a group of enabling components called Semantic Web technology which may

potentially be utilized to solve various problems in the industrial domain.

The core of Semantic Web technology consists of three components: XML, RDF/RDFS

and ontologies. In the context of ontologies, the Web Ontology Language (OWL) is introduced,

as it is the recommended standard for ontology representation. After a brief description of the

components, representative applications of Semantic Web technology is presented.

www.manaraa.com

18

2.2.1 XML (Extensible Markup Language)

XML (Extensible Markup Language) [17], a W3C recommendation, is designed to

describe data and data structures by using self-defined tags. It differs from HTML (Hypertext

Markup Language) [18], which is designed to display data by using pre-defined tags (e.g., <h1>,

<p>,). XML is self-descriptive because a Document Type Definition (DTD) [19] or an XML

Schema [5] describes data and the structure of the data in detail, which provides maximal

freedom to define new data types. XML has been successfully utilized in the WWW environment

for describing and transferring data. However, in the Semantic Web, where the meaning of data

or the meaning of the structure of the data is essential, additional information is required.

2.2.2 RDFS (Resource Description Framework Schema)

RDF (Resource Description Framework) [20] is a language originally designed to

represent information pertaining to “Web resources.” However, by generalizing the scope of what

constitutes a Web resource, any entity can be accessed through the Web, including physical

objects such as devices or products. RDF can also be used to represent information about any

object [20] and is utilized as a way of expressing the underlying meanings of objects in Semantic

Web technology. It encodes the meaning of an object by using a triple, which consists of a subject,

a predicate, and an object. URIs (Uniform Resource Identifiers) [21] are used to identify

differences among object meanings. The URIs ensure that object meanings are identified by

unique RDF descriptions on the Web. An illustrative example is provided in Figure 2-3, which is

an RDF representation of the triple set for an RFID tag [22]. The example represents data in an

RFID tag where the name is “L233”, the RFID type is “active”, and the Electronic Product Code

www.manaraa.com

19

(EPC) [23, 24] is “01000111.” Two name spaces, lisqont and epccode, are utilized to describe the

tag, which refer to XML schemas defined elsewhere.

Figure 2-2. An RDF representation of triples

URIs play an effective role in differentiating homonyms and synchronizing synonyms in

RDF. Different URIs are utilized to identify different meanings among homonymous terms. For

example, assuming that two different companies use the same term “PC” to describe a generic

personal computer and a Windows machine, respectively, having a unique URI for each meaning

makes it possible to differentiate the usages of the term between the two companies. Resource

Description Framework Schema (RDFS) is a semantic extension of RDF, which provides

mechanisms for describing groups of resources and properties along with application-specific

relationships among them [25]. RDFS is not used to instantiate resources and properties.

2.2.3 Ontologies: OWL (Web Ontology Language)

Ontology is a philosophical term indicating a branch of metaphysics that deals with the

nature of existence. However, the Artificial Intelligence and Web community have given the term

new meaning, referring to “ontologies” as “defined objects and relationships among them.” Tim

Berners-Lee defined an ontology as a document or file that formally defines the relationships

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:lisqont="http://www.ie.psu.edu/lisq/ont/"
 xmlns:epccode="http://www.epc.code/EPC/">
 <rdf:Description rdf:about="http://www.ie.psu.edu/lisq/ont/RFID/L233">
 <lisqont:RFID-type>Active</ lisqont:RFID-type>
 <epccode:RFID-maker>Alien Technology</ epccode:RFID-maker>

<lisqont:RFID-code rdf :resource= "http://www.epc.code/EPC/Code/01000111"/>
</rdf:Description>
</rdf:RDF>

www.manaraa.com

20

among terms [16]. In order for machines to understand a Web document, the document should

define terms and relationships among terms.

There are several ontology languages in use; however, in this research, we focus on Web

Ontology Language (OWL), as it is the World Wide Web Consortium’s (W3C) [26]

recommendation for Web ontology [27]. OWL builds on the foundation of RDF/RDFS by

providing additional descriptors (constructs) and making it possible for machines to interpret the

meaning of Web content. OWL has three types of sublanguages, OWL Lite, OWL DL, and OWL

Full [27], which are differentiated in terms of their expressiveness.

OWL provides a way to define semantic relationships either among objects or within an

object. It can define object classes and properties as well as their characteristics, such as hierarchy,

equivalence, and cardinality restrictions, including header, versioning and annotation information.

Figure 2-4 is a graph representation of OWL in action as it describes purchasable goods

(hourglasses and egg timers). Each rounded rectangle in Figure 2-4(a) represents an OWL class.

Each OWL class can be connected to other classes and each connection describes the relationship

between them, which can be regarded as data semantics. The overall description is made in a

hierarchical way using OWL and RDF/RDFS keywords, such as owl:Class, rdf:Property,

rdfs:subClassOf and rdfs:subPropertyOf, which are illustrated in the upper right bevel of Figure

2-4 (a). However, OWL key words, such as owl:equivalentClass and owl:equivalentProperty,

make the description a graph, which is illustrated in the lower left bevel of Figure 2-4(a). These

keywords play an important role in synchronizing synonyms in an ontology. For example,

assuming that “hourglass” is a synonym of “sandglass” in the inventory management system of a

retail store, both products can be retrieved by either ontology query because of the reference

capability of keywords in RDFS. Figure 2-4(b) illustrates the hierarchy and equivalence

relationships of the purchasable products ontology.

www.manaraa.com

21

Thing

Stand-alone
Clock

Kitchen
Utensil Timepieces

Purchasable
Products

Wall
Clock

Wrist
Watch

Cooking
Tools Tableware

Hourglass Sandglass Table clockEgg Timer Measuring
Spoons

Equivalence

Super-Subs
Hierarchy

 (a) (b)

Figure 2-3. An example of OWL applied to a product catalog

An ontology plays an important role in specifying the scope of objects, properties, and

their relationships. An intelligent agent can search, query, and infer based on the specified

ontology. In the event of additional or deprecated objects and properties, they can be easily added,

updated, or deleted from the ontology instance. Related ontology instances can be integrated with

an existing one via “reconciliation” in the design phase, which is the process of defining

relationships in the design details of each ontology. Defining additional hierarchies, properties,

and relationships is a part of reconciliation.

www.manaraa.com

22

Chapter 3

Literature Review

In this chapter, we present a review of previous research related to Web service

composition. Before any problem can be solved, its complexity must be assessed. Oh et al. [9]

extended the proof that the complexity of the STRIPS planning problem [28] is NP-complete,

which is presented by Bylander [29], and showed that the Web service composition problem is

also NP-complete. Various methodologies have been used to solve Web service composition

problems, each taking different factors into account. We have grouped these methodologies into

logic-based approaches, mathematical programming approaches, and other approaches.

Approaches in the literature can also be classified based on other factors, which we compare and

contrast: (1) optimal versus heuristic solution, (2) syntactic versus semantic, (3) quality of service

(QoS) versus functional, and (4) parameter-level versus operation-level. As we frame the

literature in this way, we are able to identify the gaps that our research intends to fill.

www.manaraa.com

23

3.1 Classification in Terms of Methodology

The AI-Planning problem has been addressed by a variety of methodologies, such as

planning-graph techniques, propositional satisfiability techniques, constraints satisfaction

techniques, situational calculus, rule-based planning, theorem-proving, and integer programming

[13, 30, 31, 32]. We classify these methodologies into logic-based approaches, mathematical

programming approaches and other approaches, and discuss them in detail in this section.

3.1.1 Logic-based methods

Logic-based methods have been used to address the functional aspects of Web service

composition without concern for quality of service (QoS). McIlraith et al. [33, 34, 35] utilized

ConGolog [36, 37] (a high-level logic programming language based on situational calculus) to

create an automatic Web service composition. Possible Web service compositions are represented

as a tree of situations. In this approach, a Web service corresponds to an action, while a situation

is a sequence of Web services from the initial state. States correspond to parameters of Web

services.

Rao et al. [38] applied the Linear Logic theorem to solve the Web service composition

problem. This approach considered not only functional attributes but also non-functional ones in

composing Web services. We have the same objective in our Integer Linear Programming (ILP)-

based methodology. However, the Linear Logic approach partially incorporates a decision maker

into the solution procedure, using the attributes of core services already selected by the user. Our

approach differs on this point. Oh et al. [11] represented the Web service composition problem

using Description Logic and solved the problem by using the flexible parameter matching

framework.

www.manaraa.com

24

3.1.2 Mathematical programming methods

Mathematical programming approaches have contributed to incorporating QoS factors

into the solution procedure for Web service composition problems. In 1999, Vossen et al. [39, 40]

and Kautz and Walser [41, 42] were the first to use an ILP-based approach to solve AI-Planning

problems. In 2005, Van Den Briel and Kambhampati [43, 44] reported that the ILP approach

showed relatively good or even better performance than the most efficient SAT-based methods.

Yoo and Kumara [14] then extended its application, formulating the Web service composition

problem based on Van Den Briel and Kambhampati’s Optiplan [43]. They identified unique

problem characteristics of the Web service composition problem and reflected those

characteristics into their ILP formulation. In their formulation, the number of variables and

constraints does not increase exponentially as the number of Web services increases.

The most significant benefit of the ILP approach is the ability to incorporate not only

functional attributes (e.g., parameter matching between anterior and posterior Web services), but

also non-functional ones, (e.g., cost or time spent in invoking Web services). Note that most

logic-based approaches only address functional requirements. Furthermore, multiple objectives

can be incorporated into the objective function, such as both cost and time, so alternative Web

service composition solutions that are on the efficient frontier2

As shown in Figure 3-1, there have been a few research studies related to ILP-based Web

service composition, which consider non-functional quality of service (QoS) factors [47, 48, 49].

However, Web service composition in those studies was not performed on a parameter level, but

on an operation level [47, 48, 49, 50, 51]. Multiple alternative Web services were selected for

 of the multiple objectives can be

found. Such multiple-objective ILP problems can be solved using various algorithms [45, 46].

2 An efficient frontier is a solution set where efficient solutions exist. An efficient solution can improve an objective only at the

expense of at least one other objective.

www.manaraa.com

25

each operation using non-ILP methods, and an ILP-based method was leveraged in an attempt to

find the composition with the best QoS among the services.

Web Service Composition

No evaluation on alternative
Web service compositions

Evaluation on competing alternative
Web service compositions

Matching Matching

Selection

1. Oh, Lee and Kumara (IEEE Svc Comp, 2008)
2. Gu, et al. (ICWS, 2007 / IEEE CEC, 2008)
3. Aiello, et al. (IEEE CEC, 2006)

1. Yoo , et al. (2010)
– Integer Programming (IP) : parameter level

2. Rao (ICWS, 2003/2004) – Theorem Proving
: operation level

1. Kritikos and Plexousakis (IEEE Svc Comp, 2009) - IP
2. Berbner et al., (ICWS, 2006) - IP
3. Ardagna and Pernici (LNCS, 2006) - MIP
4. Zeng and Benatallah (IEEE Software Eng, 2004) – IP
5. Medjahed et al., (VLDB, 2003) - Rule-based

<Only selection in operation level>

<No selection! Pure parameter matching> <Matching and selection simultaneously>

Figure 3-1. Web service composition with functional and/or non-functional attributes

3.1.3 Other methods

There are a few of other methodologies that do not fit into the two categories, but are

worth noting. SWORD [52] leverages a rule-based expert system that calculates possible service

outputs based on given inputs, and creates an appropriate Web services composition. Sirin et al.

[53] also proposed a prototype version of a semi-automatic method involving users for Web

service composition. Their method provides possible Web services to users at each composition

step by matching Web services based on functional properties and filtering them out based on

non-functional attributes.

www.manaraa.com

26

3.2 Other Classifications

 Web service composition approaches can also be classified in the following four ways:

(1) optimal versus heuristic solution, (2) semantic versus syntactic, (3) functional requirements

versus quality of service (QoS) concerns, and (4) parameter-level versus operation-level. The

approaches are explained and compared next.

3.2.1 Optimal versus heuristic solution approaches

Optimal solution approaches aim to solve Web service composition problems in the best

possible way regardless of time, while heuristic approaches seek to find workable solutions

quickly. Generally, if a Web service composition problem requires real-time response, then a

heuristic approach is appropriate. However, if there is sufficient design time for an application,

then an optimal approach provides the best possible solution. Many previous research studies

related to Web service composition have proposed heuristic approaches [10, 11, 12, 54, 55, 56,

57], while just a few papers [48, 49, 58] have proposed optimal solution approaches to Web

service composition problems. Optimal solution approaches can be further classified into two

categories: operation-level and parameter-level (see Figure 1-2). All previous papers proposing

optimal solution approaches solved Web service composition problems at the operation level.

However, we propose an optimal solution approach at the parameter level, which is one of the

contributions of this research.

www.manaraa.com

27

3.2.2 Semantic versus syntactic approaches

As discussed in the previous chapter, some of the most challenging problems of Web

service composition are semantic issues. As the name implies, Semantic Web service composition

considers the meaning of content. Conversely, Syntactic Web service composition does not

consider semantics.

In recent times, semantic processing capability has become more important. This is

evidenced by the evolution of the Web Service Challenge, a collaborative competition sponsored

by the IEEE International Conference on Commerce and Enterprise Computing, where

researchers work on Web service composition problems [59]. Since 2008, the competition has

required participants to be equipped with semantic processing capability.

Several representative research papers [14, 32, 55, 57] address Semantic Web service

composition problems. Our semantic approach differs in that it extracts two types of relationships

among Web service input/output parameters from the ontology written in OWL: (1) equivalence

and (2) hierarchy. We formulate the relationships using Integer Programming and integrate them

into Syntactic Web service formulations.

www.manaraa.com

28

3.2.3 Functional requirements versus quality of service concerns

Functional requirements are the most basic conditions that must be met for a Web service

composition solution to be valid. A universal functional requirement for a Web service

composition is that all input parameters of a Web service must be satisfied in order to invoke it.

As discussed in the problem definition in Chapter 2, a solution to a Web service composition

consists of a set of Web services and their invocation sequence, either serially or in parallel.

Therefore, the sequence of Web services must satisfy functional requirements.

Many logic-based approaches [9, 33, 36, 38] consider functional requirements to be the

only constraints of Web service composition, and they attempt to find solutions that invoke the

minimum number of Web services. However, as discussed in the research motivation part of

Chapter 1, a solution with a minimum number of Web services may not be the best solution if

Web service users have their own specific objectives, such as cost or time. To address such a case,

many scholars have tried to incorporate quality-of-service (QoS) into Web service composition

[47, 48, 49, 57, 58, 60]. These representative research papers considered not only functional

requirements but also QoS factors. Likewise, our approach considers both during the Web service

composition process.

www.manaraa.com

29

3.2.4 Parameter-level versus operation-level composition

Details in Web service composition can be classified as being either parameter-level or

operation-level. As shown in Figure 1-2, parameters are the components of an operation which

must be considered in order to complete a composition solution. Several research studies [33, 48,

49] have considered operations that are functionally categorized in advance, and other scholars

[10, 14, 32, 54, 56] have addressed parameter-level Web service composition. Our research

considers parameters during the composition process.

3.3 Summary

Table 3-1 compares several representative works with our research in terms of the

framing we have used for literature review. Our work proposes an optimal solution approach to

parameter-level Semantic Web service composition, considering both functional requirements

and quality of service. To the best of our knowledge, our work is the first to consider all four

framing aspects compared in the table.

Table 3-1. Comparison of Representative Research to This Study

 Optimal
or Heuristic

Semantic
or Syntactic

QoS
or Functional

Parameter
or Operation

Yoo, et al.
(2010) Optimal Both Both Parameter

Kritikos and Plexousakis
(2009) Optimal Both Both Operation

Oh, et al.
(2008) Heuristic Both Functional Parameter

Gu, et al.
(2007) Heuristic Syntactic Functional Parameter

Zeng, et al.
(2004) Optimal Syntactic Both Operation

www.manaraa.com

30

Chapter 4

Solution Methodology

Three main objectives are addressed in this research. The first objective is to find a Web

services composition solution that both satisfies functional requirements (i.e., parameter matching)

and optimizes non-functional attributes (e.g., cost, time, reputation). The second objective is to

find not only the best composition solution, but also near-optimal composition solutions (k-best

solutions). The third objective is to find composition solutions that consider semantic

relationships among parameters (e.g., equivalence and hierarchy).

In order to address the first issue, we propose to formulate the Web service composition

problem mathematically while incorporating both functional and non-functional requirements.

Integer Linear Programming (ILP) [61] is used when all variables are integers. In cases where

some, but not all, variables are integers, a Mixed-Integer Linear Program (MILP) [62] is

appropriate.

Various approaches have been taken in order to find k-best solutions for combinatorial

optimization problems [63, 64, 65, 66, 67, 68, 69], one example being a binary search algorithm.

To find k-best solutions to the ILP-based Web service composition problem, we propose

leveraging cutting planes that eliminate the optimal solution while retaining other feasible

solutions in binary integer programs. By sequentially applying the cutting planes to the current

best solution, k-best solutions are identified.

These two issues can be regarded as syntactic problems; however, in the Web service

composition problem, semantic problems also exist. In cases where certain parameters have

hierarchical or synonymous relationships, the solution space is enlarged, and superior solutions

can be found when Web service composition software agents understand the semantic

www.manaraa.com

31

relationships. To account for semantics in the Web service composition problem, we propose the

utilization of Semantic Web Technology as discussed in Chapter 2.

In summary, Integer Linear Programming is used for the mathematical formulation, a

cutting plane method is utilized to generate k-best solutions, and semantic issues addressed by

leveraging the semantic Web technology. The solution methodologies for these three issues are

discussed in detail in this section along with proposed system architecture.

4.1 Integer Programming Formulation for Syntactic Web Service Composition

We propose formulating Web service composition problems using Integer Linear

Programming (ILP). This section presents a general formulation for Web service composition

problems along with analysis of variables and constraints. To demonstrate how to formulate a

Web service composition problem using the proposed formulation, an example Web service

composition problem is used. Refer to Appendix A for a detailed formulation of the example.

4.1.1 Domain definition

W is the set of Web services in a UDDI system.

P is the set of all Web service parameters in W.

InP P⊆ , is the set of parameters that are used as input for any Web service.

OutP P⊆ , is the set of parameters that are used as output for any Web service.

InitialP P⊆ , is the set of initially given parameters.

GoalP P⊆ , is the set of goal parameters.

,input
pW W p P⊆ ∀ ∈ , is the set of Web services that have parameter p as input.

www.manaraa.com

32

,output
pW W p P⊆ ∀ ∈ , is the set of Web services that have parameter p as output.

Stage (s): 1 s S≤ ≤ , where S is the maximum number of stages for Web service composition.

sW is the set of Web services simultaneously invoked at Stage s.

4.1.2 Problem classification

If 1S = and 1 1W = , then the problem is a Web Services Discovery Problem; otherwise, if

 (11 or 1S W> >), then it is a Web Services Composition Problem.

4.1.3 Variable definition

For all Ww∈ , 1,...,s S∈ , ,w sy are invocation variables, and they are defined as follows.

,

1 if Web services is invoked in stage ,
0 otherwise.w s

w s
y

=

The following variables are parameter usage variables and are defined as follows.

,

1 if Web services is invoked in stage such that ,
0 otherwise.

input
pinput

p s

w s w W
x

 ∈ =

,

1 if Web services is invoked in stage such that ,
0 otherwise.

input output
p poutput

p s

w s w W w W
x

 ∉ ∧ ∈ =

,

1 if parameter is known but not used in stage ,
0 otherwise.

known unused
p s

p s
x −

=

www.manaraa.com

33

Parameter usage variables consist of three types of parameters, (1) input parameters, (2) output

parameters, and (3) known-unused parameters. Parameters can be used as input parameters or

output parameters in a stage, or they are carried to the next stage, in which case parameters would

be known-unused parameters.

4.1.4 Formulation

 (1) Objective Function

One of the major contributions of this research is the incorporation of quality-of-service (Qos)

factors into the formulation. Any numerically describable QoS factors can form the objective

function.

,(), where is the function of Web service and Stage . (1)w s
w W s S

Minimize f y f w s
∈ ∈
∑∑

(2) Constraints and Variables

a. Initial knowledge constraints

Initially-known parameters are represented by the initial constraints. To define the initial

constraints, Stage 0 variables are introduced. The initially-known parameters are expressed by

setting output variables of Stage 0 to “1,” which can be interpreted that the initial knowledge is

the output knowledge of Stage 0. All other input and known-unused variables at Stage 0 are set to

“0.”

,0 ,0 ,01, 0output input known-unused
p p p Initialx x x p P= = = ∀ ∈ : Given parameters at initial stage (2)

www.manaraa.com

34

,0 ,0 ,0, , 0,input output known-unused
p p p Initialx x x p P= ∀ ∉ : Unknown parameters at initial stage (3)

* Number of constraints = 3 P⋅

b. Goal knowledge constraints

Goal parameters are the parameters to be discovered during Web service composition. Goal

parameters are represented by goal constraints. Initially-unknown parameters become known

through the invocation of Web services, which means the unknown parameters will be the output

parameters of invoked Web services. Once a parameter is known, it is used as an input parameter

for other Web services. In cases where some known parameters are not used in a stage (known-

unused), the parameters are carried to the next stage until they are carried to the last stage.

Therefore, the goal parameters can be defined using the variables for the last stage. In the last

stage, the goal parameters should be used as input parameters, output parameters, or known-

unused parameters of Stage S.

, , , 1output known-unused input
p S p S p S Go a lx x x p P+ + ≥ ∀ ∈ : Goal parameters at the final stage (4)

* Number of constraints = GoalP

c. Web services invocation constraints

Web services invocation constraints play an important role in meeting the functional requirements

of Web service composition solutions. Functional requirements mean that all the required input

parameters of a Web service should be ready before invoking the Web service, and that once the

Web service is invoked, output parameters of the Web service become known.

www.manaraa.com

35

, , , 1,..., (5)
input
p

input
w s p s

w W

y x p P s S
∈

≥ ∀ ∈ ∈∑

, , , , 1,..., (6)input input
w s p s py x w W p P s S≤ ∀ ∈ ∀ ∈ ∈

These two sets of constraints guarantee that all input parameters of a Web service should be ready

before invoking the Web service, while the below two sets of constraints guarantee that all output

parameters of a Web service should become known after invoking the Web service.

, ,
\

, 1,..., (7)
output input
p p

output
w s p s

w W W

y x p P s S
∈

≥ ∀ ∈ ∈∑

, , \ , , 1,..., (8)output output input
w s p s p py x w W W p P s S≤ ∀ ∈ ∀ ∈ ∈

* Number of constraints = input output
In p Out p

p p
S P W P W

⋅ + + +

∑ ∑

d. Non-concurrency constraints

Three types of parameters are discussed in Section 4.1.3. Among the three types of parameters,

non-concurrency constraints should be satisfied. Non-concurrency means that if a parameter is

used as a known-unused parameter, then the parameter should be neither an input parameter nor

an output parameter. Such non-concurrency constraints are represented as follows.

, , 1 , 1,..., (9)output known-unused
p s p sx x p P s S+ ≤ ∀ ∈ ∈

, , 1 , 1,..., (10)input known-unused
p s p sx x p P s S+ ≤ ∀ ∈ ∈

* Number of constraints = 2 S P⋅ ⋅

www.manaraa.com

36

e. Sequence constraints

In Web service composition, only known parameters can be used to invoke Web services as input

parameters. If a parameter is unknown in a stage, then the parameter cannot be used in the next

stage, which means that there is a sequence of knowledge usage. In other words, once a parameter

is known in Stage s-1 (which means the parameter is used as an input, output or known-unused

parameter in a stage), the parameter can be used as an input or known-unused parameter in Stage

s. Such constraints are defined as follows.

, , , 1 , 1 , 1 , 1,..., (11)input known-unused input output known-unused
p s p s p s p s p sx x x x x p P s S− − −+ ≤ + + ∀ ∈ ∈

* Number of constraints = S P⋅

f. Knowledge increment constraints

The parameters known in each stage during Web service composition processes keeps increasing.

Once a parameter is known in a stage, the known parameter is unlimitedly reusable after the stage.

The following knowledge increment constraints represent this characteristic.

, 1 , , ,, 1 , 1() () {1,..., } (12)input output known-unused input output known-unused
p s p s p s p sp s p s

p P p P

x x x x x x s S−− −
∈ ∈

+ + ≤ + + ∀ ∈∑ ∑

* Number of constraints = S

www.manaraa.com

37

g. Redundant invocation prevention constraints

As discussed previously, known parameters can be infinitely reusable. Therefore, there is no use

in invoking a Web service multiple times. The following redundant invocation prevention

constraints prohibit a Web service from being called multiple times.

,
{1,2,..., }

1, (13)w s
s S

y w W
∈

≤ ∀ ∈∑

* Number of constraints = W

h. Binary variables

, , ,, , {0,1} , 1,..., (14)input output known-unused
p s p s p sx x x p P s S∈ ∀ ∈ ∈

, {0,1} , 1,..., (15)w sy w W s S∈ ∀ ∈ ∈

* Number of variables = 3 S P S W⋅ ⋅ + ⋅

The formulation from (1) to (15) defines variables and constraints for syntactic Web service

composition. The following summarizes the number of variables and constraints required in this

formulation.

* Total number of constraints:

3 3input output
Goal In p Out p

p p

P P S P W P W S P W S

 ⋅ + + ⋅ + + + + ⋅ ⋅ + +

∑ ∑

 where input
p

p
W W W P≤ < ⋅∑ and output

p
p

W W W P≤ < ⋅∑ .

www.manaraa.com

38

* Total number of variables: 3 () () 3S P S W P⋅ ⋅ + ⋅ + ⋅

4.2 Cutting Plane Methods for k-Best Solutions to Web Service Composition

 This section illustrates a basic concept for generating cutting planes that eliminate the

optimal solution while retaining other feasible solutions in binary integer programs. In addition, a

naïve cutting plane method and two improved cutting plane methods for k-best solutions are

proposed.

4.2.1 A naïve cutting plane method

Figure 4-1 illustrates cutting planes that eliminate the optimal solution while retaining

other feasible solutions in binary integer programs, where Circle 1 is the optimal solution and

Circle 2 is the second-best one. In two-dimensional space, the optimal solution is found in the

following four cases: (a) is (1,1); (b) is (0,1); (c) is (0,0); and (d) is (1,0). The gray area represents

feasible spaces for each case. The (red) dotted lines are the corresponding cutting planes that

eliminate the optimal solution, but not other feasible solutions for each case.

2

2

2
1 2
* *
1 2

{ | () 0, 1, 2,..., }, where ()'s represent constraints.

(,), ~ , 1, 2.

* (,) ~ the optimal solution

j j

i

X P Z
P x R g x j m g x

Z b b b binary i

x b b

= ∩

= ∈ ≤ =

= =

=

www.manaraa.com

39

10

1

10

1

10

1

10

1

1

12 1

2

21

2

Figure 4-1. Cutting planes for k-best solutions

In the case of (a) in Figure 4-1, where the optimal solution is * (1,1)x = , the cutting

plane for the second best solution is:

1 2 1, where and
11 1,
2

1 1 1,
2

2 2 and
3 3

2 2 1 .
3 3

x x

x y

α β α β

α β

α β

α β

+ =

∋ − + =

+ − =

∴ = =

⇒ + =

www.manaraa.com

40

10
(b)

x

y

10

1
12

(a)

2 2cutting plane : 1
3 3

x y+ =

x

y

1

Non-integer solution

1
2

Figure 4-2. How the cut works to obtain the next best solution

4.2.2 General cutting planes for k-best solutions

2
1 2

(1)* (1)* (1)* (1)* (1)*
1 2

{ | () 0, 1, 2,..., }, where ()'s represent constraints.

(, ,..., ,...,), ~ , 1, 2,..., .

(, ,..., ,...,) ~ the (first) optimal solution

n

n
j j

i n i

i n

X P Z
P x R g x j m g x

Z b b b b b binary i n

x b b b b

= ∩

= ∈ ≤ =

= =

=

When the (first) optimal solution is (1)* (1)* (1)* (1)* (1)*
1 2(, ,..., ,...,)i nx b b b b= , the cutting plane

for the second-best solution is:

www.manaraa.com

41

(2) (2) (2) (2) (2)
1 1 2 2

(2) (1)* (2) (1)* (2) (1)* (2) (1)*
1 1 2 2

(2) (1)* (2) (1)* (2) (1)* (2) (1)*
1 1 2 2

... ... 1, where (1,2,..., ,...)
1 1,
2

1 1,
2

i i n n i

i i n n

i i n n

x x x x i i n

b b b b

b b b b

α α α α α

α α α α

α α α α

+ + + + + = =

∋ − + + + + + =

+ − + + + + =

(2) (1)* (2) (1)* (2) (1)* (2) (1)*
1 1 2 2

(2) (1)* (2) (1)* (2) (1)* (2) (1)*
1 1 2 2

1 1,
2

1 1.
2

i i n n

i i n n

b b b b

b b b b

α α α α

α α α α

+ + + − + + =

+ + + + + − =

The number in parenthesis is the order of the kth optimal solution. At this stage, since we

find the cutting plane for the second optimal solution from the first optimal solution, the

superscript of x is (1), and that of α is (2).

 When the (k-1)th optimal solution is (1)* (1)* (1)* (1)* (1)*
1 2(, ,..., ,...,)k k k k k

i nx b b b b− − − − −= , the

cutting plane for the kth best solution is:

() () () ()
1 1 2 2

()

() () () ()
1

1

... ... 1,

where (1,2,..., ,...) is the solution to the following LP problem.

 (, . . , ,)

 :

k k k k
i i n n

k
i

n
k k k k

i n i
i

x x x x
i i n

Min an arbitrary objective of i e or

subject to

α α α α

α

α α α α
=

+ + + + + =

=

∑

(1)* () (1)* () (1)* () (1)* ()
1 1 2 2

(1)* () (1)* () (1)* () (1)* ()
1 1 2 2

(1)* () (1)* ()
1 1 2 2

1 1,
2

1 1,
2

k k k k k k k k
i i n n

k k k k k k k k
i i n n

k k k k

b b b b

b b b b

b b

α α α α

α α α α

α α

− − − −

− − − −

− −

− + + + + + =

+ − + + + + =

+ + (1)* () (1)* ()

(1)* () (1)* () (1)* () (1)* ()
1 1 2 2

()

1... ... 1,
2

1 1,
2

 ~ (1,2....).

k k k k
i i n n

k k k k k k k k
i i n n

k
i

b b

b b b b

where unrestricted i n

α α

α α α α

α

− −

− − − −

+ − + + =

+ + + + + − =

=

www.manaraa.com

42

Key findings from the cutting plane generation for k-best solutions are as follows.

(1) The cutting plane for the k-best solutions is independent of the objective function as well as

constraints.

(2) The fact that all variables in the formulation of the proposed Web service composition are

binary enables us to generate cutting planes.

4.2.3 An improved cutting plane approach

We also propose an improved cutting plane approach (see Figure 4-3), which eliminates a

larger non-integer space than the naïve cutting plane method. In addition, the cuts eliminate areas

up to adjacent binary points.

where:

 is the index set of variables that have the value of 1,

 is the index set of variables that have the value of 0, and

(1) 1,i i
i I i O

I

O

n I O

x x n
∈ ∈

= +

+ − ≤ −∑ ∑

10

1

10

1

10

1

10

1

1

12 1

2

21

2

Figure 4-3. Improved cutting plane approach for k-best solutions

www.manaraa.com

43

As a pilot, we applied the improved cuts to obtain the two best solutions in the previous

small Web service composition example illustrated in Figure 1-3. It turns out that the optimal

solution was WS-E (getHospitalWithBloodBank). However, in order to reach the second-best

solution (1st Stage: WS-A and WS-B; 2nd Stage: WS-D; and 3rd Stage: WS-C), 131 additional

cuts were required. We analyzed the solutions after applying each cut to identify the reason why

such a large number of cuts were needed to obtain the next best optimal solution. It turns out that

the intermediate solutions included the first optimal solution and some other Web services, such

as 1st Stage WS-E and WS-A. WS-A did not reach the goal state, however, since the solution

included the first optimal solution, it satisfied the objective (the goal state) with a slightly higher

cost than the first optimal solution. Such a solution did not provide any added value. In order to

find other ways of reaching the goal state, we created the following cutting plane approach.

4.2.4 A cutting plane approach that negates previous solutions

This cutting plane approach negates all previous solutions, so that a next best solution

does not include the exact same solutions that were found previously. However, this approach

does allow the next best solution to include parts of previous solutions. To implement such cuts,

we introduced additional binary variables to express binary-choice-type constraints as follows.

() ()

()
() ()

()

()

1 (1)

1

where { } is the variable set
 that includes Web service variables except parameter variables,

 is a binary v

k k
i

i Ik
i k k

i I i
i I

k
i

k

x I M b

x I
x I M b

x

b

∈

∈
∈

 ≤ + − × −

≠ ⇔
 ≤ − + ×

∑
∑ ∑

ariable introduced at the k-th solution,
 and is a positive large number greater or equal to 1.M I +

www.manaraa.com

44

This cutting plane works more effectively. We were able to obtain the next best solution

as soon as we added this cutting plane to the original formulation.

4.2.5 Elimination of only the current best solution

The proposed k-best solution methods do not eliminate other feasible solutions and only

exclude the k-1 best solutions. The methods take advantage of the characteristics of the proposed

binary Integer Programming formulation for Web service composition. As illustrated in Figure 4-

3, since the generated cutting planes, which are dotted lines, eliminate only one solution that is

the current best solution, there is no possibility that the k-best method discard any feasible

solutions.

4.2.6 Analysis of k-best solutions

Figure 4-4 shows 5-best solutions, in terms of cost, to the blood delivery example

discussed in Section 1.2, generated using the proposed k-best solution approach. The best solution

costs $40 with four Web service invocations, the second best one $50 with three, the third best

one $60 with three, the fourth best one $70 with four, and the fifth best one $100 with only one

invocation. The first, second and fifth best solutions form an efficient frontier of this problem.

Using this k-best solutions, decision makers can broaden their understanding on the solution

space and can choose the most preferable solution from their own point of view. This k-best

solution problem is similar to multiple criteria decision making problems [70, 71, 72], terms that

both problems can have multiple solutions that form efficient frontier. However, while the k-best

solution approach focuses on only one objective and generates other good solutions in terms of

www.manaraa.com

45

the objective, multiple criteria optimization approaches use an integrated objective that is a

function of multiple objectives.
of Web services

Cost
($)

1

2

3

4

50 100

1

2

4

5

3

Efficient Frontier

k-Best solutions
1. $40 : H1($10)-B1($10)-T1($10)-D1($10)
2. $50 : H2($20)-B1($10)-T2($20)
3. $60 : H2($20)-B2($20)-T2($20)
4. $70 : H2($20)-B1($10)-T2($20)-D2($20)
5. $100 : H3($100)

Figure 4-4. Examples of k-best solutions

4.3 Integer Programming Formulation for Semantic Web Service Composition

This section presents a general formulation for semantic Web service composition, which

considers semantic relationships among parameters, in this case hierarchy and equivalence. Both

relationships are formally defined in the Web Ontology Language (OWL) using rdfs:subClassOf

and equivalentClass key words [27]. There are common constraints between syntactic and

semantic Web service composition formulations. Therefore, this section focuses only on the

additional constraints introduced to address semantic issues.

www.manaraa.com

46

4.3.1 Variable definition

In addition to the variables defined in Section 4.1.1, for semantic propagation, semantic variables

are defined as follows.

,

1 if parameter is known through "semantic propagation" in stage ,
0 otherwise.

semantics
p s

p s
x

=

4.3.2 Formulation

(1) Initial constraints

The initial constraints of semantic Web service composition are almost the same as those of

syntactic Web service composition. The only difference is that semantic variables for the initial

stage, ,0
semantics
px , are added.

,0 ,0 ,0 ,01, 0,output input known-unused semantics
p p p p Initialx x x x p P= = = = ∀ ∈ : Given parameters at initial

stage (16)

,0 ,0 ,0 ,0, , , 0,input output known-unused semantics
p p p p Initialx x x x p P= ∀ ∉ : Unknown parameters at initial stage (17)

(2) Goal constraints

The goal constraints of semantic Web service composition are almost the same as those of

syntactic Web service composition. The only difference is that semantic variables for the last

stage, ,
semantics
p Sx , are added.

, , , , 1output known-unused input semantics
p S p S p S p S Go a lx x x x p P+ + + ≥ ∀ ∈ : Goal parameters at the final stage (18)

www.manaraa.com

47

(3) Semantics propagation constraints

Semantic relationships among Web service parameters are represented in the semantics

propagation constraints. Semantics propagation occurs when one parameter has a semantic

relationship with another parameter, and the knowledge of one parameter affects the knowledge

of the other parameter. For example, when used as a parameter of a Web service, it is assumed

that the “U.S. Address” class inherits from the “Address” class, meaning the former has

additional member variables or methods than the latter according to the definition of inheritance

in objected-oriented programming. Hence, once the content of U.S Address is known, then that of

Address is known as well. This semantic chaining of knowledge is the essence of semantics

propagation. This research limits its scope to two instances of semantics propagation: hierarchy

and equivalence. However, the proposed ILP (Integer Linear Programming) framework for

Semantic Web service composition has capacity to handle other complex semantic relationships

described in Web Ontology Language. We define the semantics propagation constraints next.

First-order semantics propagation constraints are needed to describe the fact that once parameter

p becomes known, then the semantic variable for parameter p becomes also known, and are as

follows:

, , (19), {1,..., }. semantics output
p s p sx x p s S≥ ∀ ∈

Second-order semantics propagation constraints define semantics propagation between a child

parameter and its direct parent parameter and are as follows:

, , (,) where is the direct parent of . (20)semantics semantics
p s q sx x p q p q≥ ∀

Third-order semantics propagation constraints define semantics propagation in the whole

parameter hierarchy, and are as follows:

www.manaraa.com

48

, , , , (,), where is a parent of in parameter type hierarchy. (21)semantics output h
p s q s p sx x x s p q p q− ≤ ∀ ∀

, () 1 , {1,..., }, where () is the number of child parameters of . (22)h
p s

h
x f p p s S f p p≤ − ∀ ∈∑

The equivalence relationships among parameters are defined as follows.

, , (,) where is equivalent to . (23)semantics semantics
p s q sx x p q p q= ∀

 (4) Sequence constraints

Only when parameter p is known from the previous stages can it be used as an input or a known-

unused variable. Such sequential requirements are represented in the sequence constraints.

, , , 1 , 1 , 1 , 1 , {1,..., }. (24)input known-unused input output known-unused semantics
p s p s p s p s p s p sx x x x x x p P s S− − − −+ ≤ + + + ∀ ∈ ∈

(5) Binary variables

The binary variables of semantic Web service composition are almost the same as those of

syntactic Web service composition. The only difference is that semantic variables are added.

, , , ,, , , {0,1} , {1,..., } (25)input output known-unused semantics
p s p s p s p sx x x x p P s S∈ ∀ ∈ ∈

, {0,1} , 1,..., (26)w sy w W s S∈ ∀ ∈ ∈

4.4 Experimental Results

We used the test sets from the 2008 Web Service Challenge (WSC 2008), which is a

competition for semantic Web service composition held along with the IEEE Joint Conference on

www.manaraa.com

49

E-Commerce Technology (CEC) and Enterprise Computing, E-Commerce and E-Services (EEE)

[73]. Each test set contained a WSDL file, an OWL file, and an XML file. The WSDL file

included descriptions for all Web services, such as name, input/output parameters, etc. The OWL

file defined semantic relationships among the input/output parameters of the given Web services.

The XML file specified initially-known parameters and goal parameters. The composition results

were generated in WSBPEL (Web Services Business Process Execution Language) [74].

Table 4-1 summarizes the test set specifications and results. The test sets were formulated

using Integer Linear Programming and solved using ILOG CPLEX Optimizer [75], a commercial

Integer Programming solver, through our composition software agent. The composition software

agent found the optimal solutions to Problem sets from 1 to 4. However, it could not solve

Problem set 5 due to lack of memory. Our agent successfully found out that Problem set 6 does

not have any solution.

Table 4-1. Problem sizes of the test sets provided by WSC 2008

Test
Sets

of
Parameters

of
Services

Solution time
(seconds)

of
Variables

of
Constraints

Results

(#Stage, #WS)

1 5,000 100 23.025 193,750 293,452 Optimal (3,10)

2 5,000 500 35.731 393,780 654,491 Optimal (3, 5)

3 10,000 1,000 38.917 838,791 1,354,145 Optimal (5, 10)

4 10,000 1,000 370.583 777,254 1,289,791 Optimal (8, 21)

5 40,000 2,000 N/A 3,511,879 5,280,279 Out of memory

6 10,000 500 22.216 764,886 1,177,609 Infeasible

For this experiment, we used high performance computing (HPC) resources provided by

the HPC Group at Penn State, which consisted of Quad 2.5 GHz AMD Processors and 32 GB of

RAM. CPLEX 11.0 was used to obtain the optimal solution for each test set.

www.manaraa.com

50

4.4.1 Consideration of quality-of-service attributes

Table 4-2 summarizes the results of two composition runs. The two objectives of the

Integer Linear Programming formulations are minimizing cost and the number of Web services,

respectively. The cost of each Web service was randomly generated for this experiment because

the test sets from the 2008 Web Service Challenge did not include cost information. Depending

on the objectives, different solutions were found. Table 4-2 clearly shows that cost and number of

Web services are conflicting criteria, which generate Pareto optimal solutions. That is, a

composition solution with the minimum number of Web services does not mean that the solution

is the most inexpensive than other solutions, which can be analogous to airline ticket price.

Usually, flights with multiple stops are cheaper than non-stop flights. This result demonstrates the

significance of QoS aspects in Web service composition.

Table 4-2. Composition results in terms of cost and number of Web services

Test sets
Main Objective: Cost ($) Main Objective: Services (#)

Cost Services Cost Services

1 37 10 59 3

2 20 5 23 3

3 46 5 61 5

4 72 10 139 8

5 No solutions No solutions

6 Out of memory Out of memory

4.4.2 Consideration of semantics

 Semantic considerations enabled us to find solutions for the WSC 2008 test set that could

not be found with only syntactic considerations. Table 4-3 summarizes the results of two

composition runs. One run considered syntax only (pure string matching), and the other run

www.manaraa.com

51

considered both syntax and semantics. Consideration of semantics made it possible to find the

optimal solution for Test sets 1 through 4. By considering only syntax, no feasible solution could

be found in the test sets. These experimental results clearly show the significance of semantic

consideration. Test set 5 was designed not to have any solution by the competition host. Our

software successfully detected the infeasibility of the test set. Unfortunately, our software could

not find out the optimal solution to Test set 6, due to insufficient computer memory.

Table 4-3. Solution existence when semantics were considered

Test
Sets

Solution Existence

Syntax Only Semantics & Syntax

1 No Yes

2 No Yes

3 No Yes

4 No Yes

5 No No

6 No No

4.5 Solution Optimality

The optimality of the solution found by our composition software is verified through the

comparison with the provided optimal solution from the 2008 Web Service Challenge (WSC

2008). Our composition software successfully found the optimal solution to Problem set 1 to 4

and found out that there are no solutions in Problem set 6.

www.manaraa.com

52

4.6 System Architecture

Figure 4-5 illustrates the architecture of the Web service composition software in which

the proposed framework is implemented. The software consists of three steps: bootstrapping,

query processing, and execution. In this section, the three steps are discussed in detail.

WSDL DB Type
Hierarchy

WSDLs OWL

Query Processing

Bootstrap

Query

Execution

Service
Request
(WSDL)

ServerClient

Execution Engine ILP
Solver

WSBPEL
(Solutions) Solution Generation

ILP Formulation Generation

Figure 4-5. System architecture

4.6.1 Bootstrapping

In the bootstrapping step, the Web service composition software reads all input WSDL

(Web Service Description Language) files [6] and the OWL (Web Ontology Language) file [27]

that includes semantic relationship information. The WSDL files include all Web services under

consideration for the Web service composition process. From a Service-Oriented Architecture

(SOA) [1] point of view, those Web services are the ones stored in UDDI (Universal, Description,

Discovery, and Integration) [7]. Once it is finished reading the WSDL and OWL files, the

www.manaraa.com

53

composition software is ready to run the composition process. Samples of the actual WSDL files

and OWL files are presented in Appendix B.

4.6.2 Query processing

The query processing step starts when query files are received. The query file is written

in XML and includes initially-known parameters and goal parameters. This step begins to

generate the Integer Linear Programming formulation (ILP) based on the WSDL and OWL files

that were read in the previous step.

4.6.3 Execution

Finally, the execution step performs ILP problem-solving and generates a WSBPEL

(Web Service Business Process Execution Language) file [74], in which a Web service

composition solution is specified in detail. Figure 4-6 shows an example solution in WSBPEL.

Figure 4-6. A composition result in WSBPEL

www.manaraa.com

54

4.7 Summary

The proposed methodologies for semantic Web service composition have presented in

this chapter. The proposed IP formulation for semantic Web service composition guarantees to

generate the optimal solution. Leveraging the proposed k-best solution methods, other good

solutions are generated, which play a significant role of broadening decision maker’s view on the

solution space. The system architecture for the Web service composition systems has been also

discussed in detail.

www.manaraa.com

55

Chapter 5

An Application of Web Service Composition: Modular Product Design

Global product development is transforming the way many companies conduct business,

and product modularity is a critical component for success [76]. Large multinational corporations

are using product modularity to help create innovative product development systems utilizing best

practices among different divisions to speed up development and reduce costs. For example, Ford

is leveraging the best practices of four brands in its Global Product Development System (GPDS)

– Ford, Mazda, Volvo, and Aston Martin/Land Rover – to “bring vehicles to the market faster and

for less cost” [77]. Boeing’s strategy for developing the 787 Dreamliner is similar, having

partnered with 15 companies in ten U.S. States and seven countries to create the major structural

systems of the aircraft [78].

Clearly defined interfaces between modules enable the success of distributed global

product development. They allow geographically-distributed teams to work autonomously before

modules are integrated into a product. Without such modularity, “more intense collaboration

across design interfaces is necessary” [76], which invariably causes delays and missteps in the

product development process. The global scale of today’s economy compounds the problem

further, as cyberinfrastructure is becoming increasingly critical for seamless integration and

maintenance of organizational operations [79]. Clearly defined interfaces between modules will

foster the design of machine-readable interface representations, because modular components are

composed of multiple input/output interfaces to other modules. As a result, state-of-the-art,

machine-readable languages that have been developed by the Web service community will then

be able to be adapted to support modular product design.

Our vision is to utilize Service Oriented Architecture (SOA), which is the most advanced

Web-based service system architecture [2], to formalize a cyberinfrastructure-based framework

www.manaraa.com

56

for modular product design in a global manufacturing environment. The cyberinfrastructure

consists of a machine-readable representation scheme for components, a design repository to

store component descriptions, and a software agent that aids in product design. The proposed

framework is rooted in an analogy between SOA’s web services and their composition and

modules and modular product design. To realize this framework, we need to address three

challenges that currently hinder the use of SOA in modular product design:

1. Developing an interface-oriented machine-readable representation scheme for

modularized components;

2. Formalizing a cyberinfrastructure-based framework that enables global users to

describe, publish, and discover component information in a standardized way; and

3. Adapting Artificial Intelligence (AI) planning algorithms to support modular product

design.

In this chapter, we propose such a cyberinfrastructure-based modular product design

framework. The motivation behind the application is discussed in Section 5.1. Section 5.2

reviews previous literature associated with modular product design and Web service composition.

Section 5.3 discusses the elements of the proposed framework in detail. Section 5.4 demonstrates

the framework through a case study. Finally, Section 5.5 discusses the implications of this

application and relevant future work.

5.1 Motivation

The current global manufacturing environment has significantly transformed product

development processes. Companies are taking advantage of specialties from diverse companies

from all over the world. For example, U.S.-based organizations can utilize inexpensive but

productive labor from low-wage countries like China and India, and also leverage competitive

www.manaraa.com

57

designs from European countries like France or Italy. However, geographical distance and

language barriers hinder the maximum utilization of resources in the current globalized

environment. Salespeople travel all over the world with multi-language versions of hard-copy

catalogs advertising available parts and components. Word of mouth is still one of the common

practices for direct marketing.

Global product development processes can be facilitated by leveraging both the

contemporary modularization trend in product design and the Service Oriented Architecture

proposed by the Web service community [1]. Such synergetic efforts will significantly

differentiate this new global paradigm from the current best practice, namely, proprietary catalog-

based systems. Figure 5-1 shows a hypothetical scenario for global manufacturing based on

modular product design using cyberinfrastructure. Suppliers from all over the world publish their

product information in a machine-readable language on a global design repository. Note that even

though repositories and machine-readable language are global standards, they can also be built

and standardized locally, at the industry- or company-level. Product designers from different

organizations can refer to component information stored in the design repository and find proper

components satisfying their design parameters.

www.manaraa.com

58

CPU
Supplier

#1
CPU

Supplier
#2 HDD

Supplier
#1

HDD
Supplier

#2

Mother B/D

Supplier
#1

Mother B/D

Supplier
#2

Product Designer

Design Parameters
-Cost: < $400
-Weight: < 1.5kg
-Length: < 20cm
-Width: < 16cm
-Height: < 1cm

Product Family / Modules
Information (Ontology)

Machine-Readable
Representation of Parts

Global Design
Repository

Memory
Supplier

#1
Memory
Supplier

#2Korea
Japan

China
Thailand

Taiwan
India

USA
Mexico

OEM (USA)

On Cyberinfrastructure

Figure 5-1. Modular Product Design Framework for Global Manufacturing

5.2 Background and Related Work

Machine-readable module representation is the first step to ensuring the success of

modular product design for global manufacturing in the proposed cyberinfrastructure-based

framework. The National Institute for Standards and Technology (NIST) has proposed the use of

eXtensible Markup Language (XML) [17] to describe functions and associated flows in

computer-based design [80, 81, 82, 83]. Devanathan et al. [84] presented the concept of

components in XML, and Bohm et al. [85] introduced an extensive data schema to capture

fundamental elements of design information. These representation schemes for products or parts

were designed primarily from a materials or energy flow point of view, which is sequential or

flow-oriented; however, the recent trend toward modularization makes the old schemes obsolete.

We propose interface-oriented representation schemes as a way of solving this problem.

www.manaraa.com

59

An interface consists of a set of flows and specifies detailed parameters for the

constituent flows. However, an interface can also encapsulate detailed flow information. For

example, an electrical flow, a connector type, and a communication protocol together form the

USB (Universal Serial Bus) interface of a computer peripheral, but the interface name (USB) and

the version number encapsulate the specifications of its three elements.

To store design knowledge, a digital design repository has been developed by the

Missouri University of Science & Technology (MS&T, former the University of Missouri – Rolla)

and the National Institute of Standards and Technology (NIST) [83, 86, 87]. The digital design

repository is a web-based repository that stores specifications of selected components and

relationship data among them, which users can review through Web browsers. Currently, it

contains detailed design knowledge pertaining to approximately 120 consumer products [88]. In

addition, the repository provides users with design tools, such as the Function-Component Matrix

(FCM) and Design Structure Matrix (DSM). However, the digital design repository does not hold

sufficient component information with enough detail to actually design a functional, working

product. In addition, the repository provides users with one-way service, which means that it

stores pre-selected product design data that can only be used for reference purposes; it does not

allow users to participate in building the data.

Standardization efforts yielded the Functional Basis [89, 90], which abstracts terms of

function and flow, limits the number of terms, and recommends those terms as component

descriptors. The Functional Basis plays an important role in the systematic description of

components, and helps create transparent communications among designers or design software

applications. Abstraction, however, gives rise to incompatibility issues due to the ambiguous

nature of the abstracted terms.

Bryant et al. [88, 91] developed a computational tool for automated concept generation.

After creating a function chain, relevant components are selected utilizing the Function-

www.manaraa.com

60

Component Matrix, and component compatibility is checked using the Design Structure Matrix.

However, the tool does not support a branching and merging scheme during module assembly.

Also, the tool cannot directly handle function chains with multiple inputs and outputs. Instead, it

decomposes a function chain with multiple inputs and outputs into multiple function chains which

each contain only a single input and output.

In other computational product design research projects, Campbell et al. [92, 93]

implemented an agent-based approach to automated design synthesis for electromechanical

products. Their system, called A-design, not only generates but also iteratively improves design

configurations based on a set of pre-determined objectives. A-design is based on the agent-based

and adaptive nature of the process [92, 93]. Mittal et al. [94] implemented an expert system called

PRIDE to design paper handling systems. It acquires knowledge from expert designers and

performs a knowledge-guided search for possible designs that satisfy requirements. Navinchandra

et al. [95] presented a case-based approach to exploit the knowledge embodied in prior designs.

They captured and saved prior designs regardless of success or failure in order to build on prior

successes and learn from previous failures. They applied this case-based approach to the

conceptual design of hydro-mechanical systems. Finally, Titus and Ramani [96] formulated

concept design problems as constraint satisfaction problems.

Likewise, as briefly mentioned above, the Web service community has been developing a

formal way to describe, publish, store, and discover software components, called Service

Oriented Architecture (SOA). Figure 1-1 illustrates SOA-based Web services. Universal

Description Discovery and Integration (UDDI) and Web services technology, which are two

major components of SOA, form part of the cyberinfrastructure for services on the Web. UDDI

serves as a registry or storage for published Web services from various Web service providers. In

our proposed framework, a UDDI corresponds conceptually to the digital design repository (like

the one implemented by MS&T and NIST [83, 86]) while a Web service corresponds to a

www.manaraa.com

61

physical component whose specification is stored in the repository. The digital design repository

stores specification data for selected products and their components, as well as relationship data

among components, so that users can review the data through Web browsers. Table 5-1

summarizes the analogy between Web service composition and modular product design.

 The specific composition of Web services used to respond to user queries is analogous to

a modular product design that is used to satisfy customer preferences; a Web service composition

solution consists of a set of Web services and their invocation sequence, while a modular design

solution consists of a set of components and their assembly sequence. One major difference is

that Web services do not have physical properties like modules in a product, such as size or

weight. Since Web services do not have physical properties, most Web service composition

algorithms leverage logic-based approaches, such as propositional logic or satisfiability

techniques, which consider only functional requirements. The functional requirements demand

that preceding Web services provide required inputs for those that follow in a composition

solution.

 We argue that the modular product design problem is similar to the Web service

composition problem. Just as each module description can be published to a digital design

repository, each Web service description can be registered with a UDDI; hence, the design

problem translates into a Web service composition problem. This problem, as discussed in [12], is

a planning problem, which means that AI planning algorithms can be used to generate a design.

In the next section, we discuss our approach, which can support branching and merging and

multiple inputs/outputs, scenarios previous research has overlooked.

www.manaraa.com

62

5.3 Methodology

 This section discusses the proposed cyberinfrastructure-based framework for modular

product design in detail. The major elements of the proposed framework are a formal

representation of components, a component repository, and modular product design software. The

following sections discuss features and roles of each element in detail. In addition, the AI

planning formulation for modular product design using Integer Programming is described.

5.3.1 Formal representation of components

 Previous research conducted by MS&T and NIST identified functionality, input/output

flows, and physical parameters (e.g., dimensions) as key elements for component representation

[89];, however, recent trends in modularization draw our attention to interfaces among

components. A modularized component consists of a functional body and multiple interfaces to

other components. For instance, a hard disk drive has a functional body that consists of circular

disks with a head for reading/writing digital data, and two interfaces to the power supply and

motherboard, as shown in Figure 5-2. The power supply interface can be either AC or DC with a

certain voltage, while the motherboard interface can be either SCSI or IDE.

www.manaraa.com

63

IDE Hard Disk Drive Interface

Motherboard

Power Supply

Hard Disk Drive

Figure 5-2. Standardized Interfaces: Examples from a Hard Disk Drive

 Here, we introduce an interface-oriented, machine-readable representation scheme for

modularized components. In particular, we extend the current representation scheme developed

by MS&T to include interfaces attributed to the modularization trend, as shown in Figure 5-3.

The representation of a component consists of input/output interfaces, features, functions

specified in the functional model discussed in Section 5.3.2, and general information, including

the component name, manufacturer, and geometric specifications. While current representations

only support conceptual design, the proposed interface-oriented representation will contribute not

only to conceptual design but also to detailed, parametric design. Figure 5-4 illustrates the

concept of modularization and interface-oriented modular product design. Before modularization,

non-standard connections existed among parts, and designers had to check the compatibility of all

connections during design; however, modularization has helped designers to focus on external,

standardized interfaces. Such modularization has simplified the representation of components

www.manaraa.com

64

while helping to reduce the number of factors under consideration during the design process,

since complex interactions between modules can be abstracted by interfaces.

Figure 5-3. Machine-Readable XML Representation

P1

P3

P2P5

P4

P6

P1

P3

P2

P5

Interface-A

Interface-B

Interface-C

Interface-B

Interface-C Interface-E

Interface-D

(a) Modularization

(b) Interface-Oriented Modular Product Design

P6

P4

Interface-A

Interface-B

Interface-C

Modularization

Figure 5-4. Concept of Modularization and Interface-Oriented Modular Product Design

<?xml version="1.0" encoding="UTF-8" ?>
<tns:Component xmlns:tns="http://product.repository"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://product.repository Component.xsd">
<generalInfo>
 <companyName>MicroMoon</companyName>
 <componentName>MotherBD</componentName>
 <price>110</price>
 <weight>10</weight>
 <geometricSpecification width="6.0" height="0.5" depth="4.0" />
</generalInfo>
<inputs>
 <input name="Power" type="8"/>
 <input name="BUS" type="IDE"/>
 </inputs>
 <outputs>
 <output name="Socket" type="370"/>
 <output name="Pin" type="DIMM"/>
 </outputs>
 <functions>
 <function name="Position"/>
 </functions>
<features>

www.manaraa.com

65

5.3.2 Modular product design as an AI planning problem

As stated earlier, a modular product design problem can be transformed into an AI planning

problem [12]. An AI planning problem attempts to navigate through a state space, starting from

an initial state with the intent of reaching a goal state(s). An AI planning problem P can be

represented as 0(, ,)P t g= Σ and, (, ,)T A γΣ = where T is the set of states, A is the set of actions,

:T A Tγ × → is a state transition function, 0t is the initial state, and g is the goal state. A

solution to P is a sequence of actions that are taken to reach from the initial state to the goal state

[12, 28].

Table 5-1 compares modular product design with Web service composition showing how the

elements of the two problems correspond to the key terms of AI planning. In the case of modular

product design, the initial state corresponds to given interfaces, such as a 110V power source. The

goal state corresponds to the desired function set of the goal product, such as random access

memory (RAM) of a certain size (gigabytes), and a central processing unit of a certain speed

(gigahertz). The states correspond to interfaces available at the time and acquired functions

during the assembly process, and the actions correspond to the assembly of components. Finally,

the solution is a set of components and their assembly sequence.

Table 5-1. AI Planning Problems: Modular Product Design and Web Service Composition

AI Planning Modular Product Design Web Service Composition

Action Assemble Compose

State Available interfaces / functions Known information

Initial State Given interfaces Given (initial) information

Goal State Desired function set of a goal product Goal information

Solution A set of components and their
assembly sequence including branch
& merge scheme

A set of Web services and their
invocation sequence including
branch & merge scheme

www.manaraa.com

66

The non-redundant use of interfaces is a distinctive characteristic of modular product

design based on Web service composition. In Web service composition, known information can

be infinitely reusable by other Web services. On the other hand, once an available interface of a

component is connected to the corresponding interface of another component, then the interface

cannot be used by other components. In addition to the non-redundant use of interfaces, the

proposed AI planning-based modular product design formulation has compatibility check

capabilities, which were described in Section 4.4.3.

The AI planning approach to the modular product design problem offers a branching and

merging scheme for product architecture and multiple input/output interfaces for components.

This approach was not supported by Bryant et al. [88, 91] in a recent work on automated product

concept generation, where DSM was used to verify compatibility between two adjacent

components. However, DSM supports neither a branching and merging scheme, nor multiple

input/output interfaces, both of which are common in product architecture. Figure 5-5, the

functional model [97] of a computer system, illustrates such a case. The power supply branches

into the HDD and motherboard, and the power supply and HDD subsequently merge into the

motherboard. The power supply has multiple output interfaces, while the motherboard has

multiple input and output interfaces.

www.manaraa.com

67

Import
Electrical Energy

Position
Signal

Permanent
Store
Signal Actuate

Signal

Temporary
Store
Signal

Power Supply
Motherboard

HDD

RAM

CPU

Figure 5-5. A simple functional model of a desktop PC

Functional modeling describes the functional flow of components in a product [89], and

its incorporation into the AI planning formulation can help prevent the product design solution

from malfunctioning. The proposed AI planning formulation, specifically Section 5.3.3,

incorporates functional models into its formulation to make sure that the product design solution

follows the pre-defined functional flows of a product.

The proposed AI planning approach guarantees not only that the functional requirements

of a product are met, but also that the non-functional attributes, such as the size, cost, quality, or

weight of a product are satisfied. Functional requirements are the most essential because products

should functionally work; however, the current trend of mass customization also emphasizes the

significance of non-functional attributes of products. For example, some customers may want

lightweight laptops at a low price (e.g., less than four pounds for less than $500), while some

other customers may want high-speed laptops, regardless of weight or price.

www.manaraa.com

68

Few existing computational product design methods consider non-functional attributes,

such as size, weight, or price. Furthermore, most AI planning approaches are logic-based, which

cannot incorporate numerical constraints for non-functional attributes into their models [98].

Therefore, we propose an AI planning-based Integer Programming (IP) formulation for modular

product design problems that can incorporate non-functional attributes into its mathematical

model, where the optimal product design is generated based on a single objective or a pre-defined

set of multiple objectives. Detailed formulations are described in the next section.

5.3.3 Integer Programming (IP) formulation

The following sections define the IP formulation for the proposed framework.

5.3.3.1 Domain Definition

P is the set of parts published in the proposed design repository.

I is the set of all part interfaces in P.

F is the set of all part functions in P.

Ms is the set of parts having the sth function of the goal product functional model.

InI I⊆ is the set of interfaces that are required as input for any part.

OutI I⊆ is the set of interfaces that are generated as output for any part.

OutF F⊆ is the set of functions that are obtained from any part.

OutE E⊆ is the set of features that are obtained from any part.

InitialI I⊆ is the set of interfaces that are initially given.

GoalI I⊆ is the set of interfaces that are goals.

www.manaraa.com

69

GoalF F⊆ is the set of goal functions.

GoalE E⊆ is the set of goal features.

,input consumed
iP P i I− ⊆ ∀ ∈ is the set of parts that have interface i as input, consuming (using) the

interface.

,input unconsumed
iP P i I− ⊆ ∀ ∈ is the set of parts that have interface i as input where the interface

remains as an output.

,output
iP P i I⊆ ∀ ∈ is the set of parts that have interface i as output.

,output
fP P f F⊆ ∀ ∈ is the set of parts that have function f as output.

,output
eP P e E⊆ ∀ ∈ is the set of parts that have feature e as output.

Stage (s): 1 s S≤ ≤ , where S is the maximum number of stages for modular product design.

sP is the set of parts used simultaneously in product design at stage s.

5.3.3.2 Variable Definition

All p P∈ , 1,...,s S∈ , ,p sy are part usage variables.

,

1 if part is used in stage ,
0 otherwise.p s

p s
y

=

The following variables are interface, function, and feature usage variables:

,

1 if interface is available but not used at stage ,
0 otherwise.

available unused
i s

i s
x −

=

,
1 if part is used at stage ,
0 otherwise.

input consumed
input consumed i
i s

p P s
x

−
− ∈

=

www.manaraa.com

70

,
1 if part is used at stage ,
0 otherwise.

input unconsumed
input unconsumed i
i s

p P s
x

−
− ∈

=

,
1 if part is used at stage ,
0 otherwise.

input output
output i i
i s

p P p P s
x

 ∉ ∧ ∈
=

,

1 if part is used at stage ,

0 otherwise.

output
ffunction

f s

p P s
x

 ∈ =

,
1 if part is used at stage ,
0 otherwise.

output
feature e

e s
p P s

x
 ∈

=

5.3.3.3 Formulation

(1) Objective Function

We can define any numerical expression as an objective function (including one with

multiple objectives) based on target market segment characteristics (e.g., price, weight). In the

case of multiple objectives, various multi-criteria optimization methodologies, such as goal

programming, can be utilized. The following is a general objective function for multiple criteria:

1 2
1 , 2 , ,

th

1

 ... ,

where is the cost of part in terms of the criteria and 1.

n
p p s p p s n p p s

p P s S p P s S p P s S

n
i
p i

i

Minimize w c y w c y w c y

c p i w

∈ ∈ ∈ ∈ ∈ ∈

=

⋅ + ⋅ + + ⋅

=

∑∑ ∑∑ ∑∑

∑

(2) Initial constraints

The initial input interfaces are expressed by setting output interface usage variables to

“1” at Stage 0, as shown in constraint (1). Since all the other interfaces, functions and features are

not given at the initial stage, all other variables are set to “0”, as in constraint (2), (3), and (4).

www.manaraa.com

71

,0 ,0 ,0 ,01, 0output input unconsumed available-unused input-consumed
i i i i Initialx x x x i I−= = = = ∀ ∈ : Given interfaces at the initial

stage (1)

,0 ,0 ,0 ,0, , , 0,input unconsumed input consumed output available-unused
i i i i Initialx x x x i I− − = ∀ ∉ : Other interfaces at the initial stage (2)

,0 ,0 0,output available unused
f fx x f F−= = ∀ ∈ : All functions at the initial stage (3)

,0 ,0 0,output available unused
e ex x e E−= = ∀ ∈ : All features at the initial stage (4)

(3) Goal constraints

The goal of a modular product design is represented by goal constraints. If all the goal

interfaces, functions, and features are acquired at the last stage, the goal is achieved. These goal

constraints for interfaces, functions, and features are shown in constraints (5), (6), and (7),

respectively.

, , , , 1input unconsumed input consumed output available unused
i S i S i S i S Go a lx x x x i I− − −+ + + ≥ ∀ ∈ : Goal interfaces at the final stage (5)

, , 1output available unused
f S f S Goalx x f F−+ ≥ ∀ ∈ : Goal functions at the final stage (6)

, , 1output available unused
e S e S Goalx x e E−+ ≥ ∀ ∈ : Goal features at the final stage (7)

The compatibility checks between adjacent components are accomplished through

input/output constraints, non-concurrency constraints, and sequence constraints. These three sets

of constraints ensure that adjacent components have compatible interfaces. Note that functions

and features are only used as output, while interfaces are used as input as well as output.

www.manaraa.com

72

(4) Input/output constraints

Constraints (8) through (12) verify whether the required input interfaces of a component

are provided and, in turn, whether output interfaces of a component are generated. Constraint (12)

specifically guarantees the non-redundant use of interfaces. The constraint makes sure that once

an interface of a component is connected to a component, it cannot be connected to another

component at the same stage. Constraints (13) and (14) ensure proper generation of output

functions, while constraints (15) and (16) ensure that of output features.

, , , 1,..., (8)
output

i

output
p s i s

p P

y x i I s S
∈

≥ ∀ ∈ ∈∑

, , , , 1,..., (9)output output
p s i s iy x p P i I s S≤ ∀ ∈ ∀ ∈ ∈

, , , 1,..., (10)

input unconsumed
i

input unconsumed
p s i s

p P

y x i I s S
−

−

∈

≥ ∀ ∈ ∈∑

, , , , 1,..., (11)input unconsumed input unconsumed
p s i s iy x p P i I s S− −≤ ∀ ∈ ∀ ∈ ∈

, , , 1,..., (12)
input consumed

i

input consumed
p s i s

p P

y x i I s S
−

−

∈

= ∀ ∈ ∈∑

, , , 1,..., (13)
output
f

output
p s f s

p P

y x f F s S
∈

≥ ∀ ∈ ∈∑

, , , , 1,..., (14)output output
p s f s fy x p P f F s S≤ ∀ ∈ ∀ ∈ ∈

, , , 1,..., (15)
output

e

output
p s e s

p P

y x e E s S
∈

≥ ∀ ∈ ∈∑

, , , , 1,..., (16)output output
p s e s ey x p P e E s S≤ ∀ ∈ ∀ ∈ ∈

www.manaraa.com

73

(5) Non-concurrency constraints

Once it has been decided whether interface i is to be used as an input-unconsumed, input-

consumed or output variable, (i.e., ,
input unconsumed
i sx − , ,

input consumed
i sx − or ,

output
i sx is set to 1, respectively),

,
available unused
i sx − will not be set to 1. If ,

available unused
i sx − is equal to 1, it means that interface i has not been

used at stage s, and will be saved for a future stage. On the other hand, if ,
input unconsumed
i sx − ,

,
input consumed
i sx − or ,

output
i sx is equal to 1, then it means that interface i has been used at stage s. These

two cases cannot happen at the same time; so, these non-concurrency constraints are required:

, , , 1 , 1,..., (17)output available-unused input-consumed
i s i s i sx x x i I s S+ + ≤ ∀ ∈ ∈

, , , 1 , 1,..., (18)input unconsumed available-unused input-consumed
i s i s i sx x x i I s S− + + ≤ ∀ ∈ ∈

(6) Sequence constraints

Only when interface i is an output of a component in previous stages can it be used as

input or an available-unused variable in a later stage. Such sequential requirements are

represented in the following sequence constraints:

, , ,

, 1 , 1 , 1 , 1,..., (19)

input unconsumed available-unused input-consumed
i s i s i s

input unconsumed available-unused output
i s i s i s

x x x

x x x i I s S

−

−
− − −

+ +

≤ + + ∀ ∈ ∈

(7) Functional model constraints

The functional model of the goal product specifies required functions at each stage. The

functional model constraints check whether solutions meet the pre-defined functional model of

www.manaraa.com

74

the goal product. If the functional model is not given, then the functional model constraints

should be omitted.

, 1, 1,..., (20)
s

p s
p M

y s S
∈

≥ ∈∑

(8) Binary variables

Here are all the variables defined in the formulation:

 , , , ,, , , {0,1} , 1,...,input unconsumed input consumed output available-unused
i s i s i s i sx x x x i I s S− − ∈ ∀ ∈ ∈

, ,, {0,1} , 1,...,output available-unused
f s f sx x f F s S∈ ∀ ∈ ∈

, ,, {0,1} , 1,...,output available-unused
e s e sx x e E s S∈ ∀ ∈ ∈

, {0,1} , 1,...,p sy p P s S∈ ∀ ∈ ∈

5.3.4 SOA-based cyberinfrastructure to support global manufacturing

We propose a central repository to store information on available components from all

over the world much like UDDI registers all Web services. The central repository can be uniquely

built globally or locally, such as at the corporate or industry level. This paper describes major

features of the proposed SOA-based cyberinfrastructure for global manufacturing, but the

implementation of it is beyond the scope of this work.

www.manaraa.com

75

Manufacturers Suppliers

Design Repository

•Publish
Components
Descriptions

Negotiation

•Search Components
•Design Products
•Check Compatibility

• Request Customization

• Provide customized design

getCPU

getHDD

getRAM

negoDesign

subscribeSupplier

publishPart

updatePart

designProduct

checkCompatibility

SOAP
Transportation

protocol

placeOrder

Atomic query
services

Managerial
services

Composite query services

Figure 5-6. Overview of the Proposed SOA-based Cyberinfrastructure for Modular Product
Design

The repository should be able to store and share the formal representations of

components published by suppliers with manufacturers. In order to standardize and automate

such sharing processes, the cyberinfrastructure should provide SOA-based

subscribe/publish/query mechanisms. Figure 5-6 depicts the proposed SOA-based

cyberinfrastructure for modular product design. The proposed cyberinfrastructure provides three

types of Web services for both suppliers and OEMs: managerial services, atomic query services

and composite query services. Managerial services consist of Web services for

subscribe/unsubscribe/publish/update/delete operations. Atomic query services are single task

Web services, such as searching for a type of component (e.g., getCPU). Finally, composite query

services provide value-added services that an atomic query service cannot perform, such as

designing a product or checking compatibility among components. Suppliers will be able to

www.manaraa.com

76

subscribe to the cyberinfrastructure and publish/update component information by using Web

services.

Table 5-2 summarizes the differences between the proposed cyberinfrastructure for

modular product design and the existing digital design repository developed by MS&T and NIST.

The differences are categorized as pertaining to either content or architecture. In terms of content,

the proposed cyberinfrastructure contains information on modularized components, while the

current digital design repository does not consider whether or not the stored components are

modularized. In addition, module representation in the proposed approach is interface-oriented,

while that of the digital design repository is flow-oriented. The services provided by each are also

different. The proposed cyberinfrastructure provides users with managerial, simple and composite

services, while the digital design repository only provides simple query services. With respect to

architecture, since the proposed cyberinfrastructure is based on SOA, it will be remotely

accessible by invoking Web services, while the existing design repository is accessible only

through Internet browsers. In addition, the services in the proposed cyberinfrastructure are

discoverable through the standard discovery mechanism for Web services, while the services in

the design repository are not discoverable.

Table 5-2. Comparison of Proposed Design Cyberinfrastructure and Existing Design Repository

 Proposed Design
Cyberinfrastructure

Existing Design
Repository

Component type Modularized components Non-modularized components

Module representation Interface-oriented Flow-oriented

Services Composite query and simple query Simple query

Remote accessibility SOA based remote invocation Browser-based access

Discoverability Discoverable via standard description and
SOA search mechanism

N/A

www.manaraa.com

77

5.4 Case Study

This section presents a case study demonstrating how the proposed cyberinfrastructure-

based framework facilitates modular product design in a global manufacturing environment. The

scenario of this case study is based on a Dell-like business model, with an Internet-based ordering

process and assemble-to-order products with a variety of customization options. Additionally, we

assume that any product design processes occurring after customer customization will be

conducted through the proposed cyberinfrastructure-based framework. To facilitate understanding

of this case study, we use a familiar product, namely, a desktop personal computer (PC) that

consists of a motherboard, a hard disk drive (HDD), random access memory (RAM), a central

processing unit (CPU), and a power supply.

Table 5-3 summarizes the specifications for 17 components published by international

suppliers and stored in the design repository of an Internet-based assemble-to-order PC maker. In

this case study, the design repository is defined to be corporate and not globally unique. To make

the case study tractable, we consider five major components of a PC, each with three or four

alternatives. The specifications are written in the proposed machine-readable representation

scheme exemplified in Figure 5-3, and we assume these component specifications are stored in

the proposed design repository on the modular product design cyberinfrastructure through

managerial services, as illustrated in Figure 5-6. Authorized suppliers and manufacturers can use

the proposed simple and composite query services. Security issues are implicated in this

cyberinfrastructure, but are beyond the scope of this work.

The scenario begins with a customer submitting an online order form on a PC

manufacturer’s website, requiring the company to optimally design the product based on

customer specifications. Optimal PC design is the selection of proper components and assembly

sequences so as to satisfy the customer while maximizing efficiency and profit for the company.

www.manaraa.com

78

The proposed framework provides the PC maker with a solution to this problem through a

composite service illustrated in Figure 5-6. The composite service utilizes the AI planning

approach to design a modularized product.

Table 5-3. Parts Used in the Case Study

Component Function Feature Alternatives [Supplier-input:output] Price ($)

CPU Actuate 2.0GHz A-Socket 370(*) 250

Actuate 2.0GHz B-Socket 462 300

Actuate 3.0GHz C-Socket 370 320

HDD Store (Permanent) 160GB A-16V:IDE(*) 80

Store (Permanent) 160GB B-8V:SCSI 120

Store (Permanent) 320GB C-4V:IDE 130

RAM Store (Temporary) 2GB A-DIMM 110

Store (Temporary) 2GB B-SIMM 90

Store (Temporary) 2GB C-DIMM(*) 100

Power Import N/A A-110V:8V/16V(*) 50

Import N/A B-110V:4V/8V 60

Import N/A C-220V:8V/16V 70

Mother B/D Position DualBIOS A-4V/SCSI:Socket370/DIMM 110

Position DualBIOS B-8V/IDE:Socket370/DIMM(*) 100

Position DualBIOS C-16V/SCSI:Socket462/SIMM 90

Suppose that a U.S. bsed customer, who uses 110V power source, wants to buy a PC at

the lowest price, which corresponds to the initial constraints. The customer desires four specific

PC features: a 2GHz CPU, 2GB RAM, a 160GB HDD and a dual BIOS motherboard. The online

PC maker may have a functional model for the architecture of the PC, as shown in Figure 5-5, to

www.manaraa.com

79

ensure proper functioning of the assembled PC. The features requested by the customer and the

specifications in the functional model designed by the PC maker form the goal constraints.

As mentioned in Section 5.3.3, multiple objectives can be defined; however, in this case

study, we use only a single objective of minimizing price. We formulated this case study using

the proposed AI planning-based IP formulation introduced in Section 5.3.3. We highlight only

key parts of the formulation for this particular problem.

 (1) Initial constraints

Since only a 110V power supply is given as the initial condition, the following

constraints are the whole initial constraints. The other variables for stage 0 are set to “0”.

110 ,0

110 ,0 110 ,0 110 ,0

1,

0

output
V

input unconsumed input consumed available-unused
V V V

x

x x x− −

=

= = =

(2) Goal constraints

Goal constraints associated with the five goal functions listed in Figure 5-5 and four goal

features specified above are as follows.

• Five goal functions

,5 ,5 ,5 ,5 1input unconsumed input consumed output available unused
Actuate Actuate Actuate Actuatex x x x− − −+ + + ≥

,5 ,5 ,5 ,5 1input unconsumed input consumed output available unused
Temporary Store Temporary Store Temporary Store Temporary Storex x x x− − −

− − − −+ + + ≥

,5 ,5 ,5 ,5 1input unconsumed input consumed output available unused
Permanent Store Permanent Store Permanent Store Permanent Storex x x x− − −

− − − −+ + + ≥

,5 ,5 ,5 ,5 1input unconsumed input consumed output available unused
Import Import Import Importx x x x− − −+ + + ≥

,5 ,5 ,5 ,5 1input unconsumed input consumed output available unused
Position Position Position Positionx x x x− − −+ + + ≥

www.manaraa.com

80

• Four goal features

2 ,5 2 ,5 2 ,5 2 ,5 1input unconsumed input consumed output available unused
GB HDD GB HDD GB HDD GB HDDx x x x− − −

− − − −+ + + ≥

2 ,5 2 ,5 2 ,5 2 ,5 1input unconsumed input consumed output available unused
GHz CPU GHz CPU GHz CPU GHz CPUx x x x− − −

− − − −+ + + ≥

160 ,5 160 ,5 160 ,5 160 ,5 1input unconsumed input consumed output available unused
GB HDD GB HDD GB HDD GB HDDx x x x− − −

− − − −+ + + ≥

,5 ,5 ,5 ,5 1input unconsumed input consumed output available unused
DualBIOS DualBIOS DualBIOS DualBIOSx x x x− − −+ + + ≥

(3) Input-output constraints

Input-output constraints associated with motherboard Type-B are as follows:

• Interfaces

_ _
, 8 , , 370,

_ _
, , , ,

, ,

,

input unconsumed input unconsumed
MotherBD B s V s MotherBD B s Socket s

input unconsumed input unconsumed
MotherBD B s IDE s MotherBD B s DIMM s

y x y x

y x y x
− −

− −

≥ ≥

≥ ≥

_ _
, 8 , , 370,

_ _
, , , ,

, ,

,

input unconsumed input unconsumed
MotherBD B s V s MotherBD B s Socket s

input unconsumed input unconsumed
MotherBD B s IDE s MotherBD B s DIMM s

y x y x

y x y x
− −

− −

≤ ≤

≤ ≤

, , , ,
output

MotherBD A s MotherBD B s MotherBD C s Position sy y y x− − −+ + ≥ , , ,
output

MotherBD B s Position sy x− ≤ ,

_ _ _
, 8 , , 370, , 370,, , ,input consumed input unconsumed input unconsumed

MotherBD B s V s MotherBD B s Socket s MotherBD B s Socket sy x y x y x− − −= = =

_
, , , for 1,...,5input unconsumed

MotherBD B s DIMM sy x s− = ∈ .

• Functions

, ,
output

MotherBD B s Position sy x− ≥ , , , , for 1,...,5output
MotherBD B s Position sy x s− ≤ ∈ .

• Features

, ,
output

MotherBD B s DualBIOS sy x− ≥ , , , , for 1,...,5output
MotherBD B s DualBIOS sy x s− ≤ ∈ .

www.manaraa.com

81

(4) Non-concurrency constraints

For all interfaces, non-concurrency constraints should be defined. Following is the non-

concurrency constraints of the interface of DIMM for RAMs:

, , , 1, for 1,...,5output available-unused input-consumed
DIMM s DIMM s DIMM sx x x s+ + + ≤ ∈

, , , 1, for 1,...,5input unconsumed available-unused input consumed
DIMM s DIMM s DIMM sx x x s− −+ + ≤ ∈

(5) Functional model constraints

Figure 5-5 illustrates the functional model of the target PC. There are five functions, and

the corresponding functional model constraints are as follows:

,1 ,1 ,1 ,1 1 : for the import functionPower A Power B Power C Power Dy y y y− − − −+ + + ≥

,2 ,2 ,2 1 : for the permanant store functionHDD A HDD B HDD Cy y y− − −+ + ≥

,3 ,3 ,3 1 : for the position functionMotherBD A MotherBD B MotherBD Cy y y− − −+ + ≥

,4 ,4 ,4 1 : for the actuate functionCPU A CPU B CPU Cy y y− − −+ + ≥

,5 ,5 ,5 1 : for the temporary store functionRAM A RAM B RAM Cy y y− − −+ + ≥

(6) Sequence constraints

For all interfaces, sequence constraints are defined. Following is the sequence constraints

of the IDE interface for HDDs:

, , , , 1 , 1 , 1, for 1,...,5input unconsumed available-unused input-consumed input unconsumed available-unused output
IDE s IDE s IDE s IDE s IDE s IDE sx x x x x x s− −

− − −+ + ≤ + + ∈

www.manaraa.com

82

(7) The optimal solution

The optimal solution is as follows, which satisfies the entire set of specified constraints:

,1 ,2 ,3 ,4 ,51, 1, 1, 1 and 1Power A HDD A MotherBD B CPU A RAM Ay y y y y− − − − −= = = = =

Power 16V

ID
E

ID
E

Socket 370
DIMM

Po
w

er
 8

V

Power 110V
Power 16V

Power 8V

DIMM

So
ck

et
 3

70

Temporary Store

Position

Import

Permanent Store

Actuate

Functions

Interfaces

$250

$80

$100

$50

$100

Figure 5-7. Optimal Solution from an IP-based Formulation

The components marked with a * in Table 5-3 are the ones used in the optimal design that

minimize cost. Figure 5-7 shows the optimal design, which confirms that all of the compatibility

requirements between adjacent components are satisfied and that all of the required functions and

features are provided. For comparison, we enumerated all 243 possible combinations using brute-

force search. The best four feasible solutions are listed in Table 5-4. The best solution is the same

solution that the IP formulation identified without enumerating all combinations, shown in

Section 5.4. Once generating the optimal solution, using the k-best solution approach identifies

top four best solutions.

www.manaraa.com

83

From the identified k-best design alternatives, we can draw three suggestions for the U.S.-

based PC manufacturer and supplier-A. First, because the price difference between the first and

the second best design is relatively small yet the difference between the second and the third best

design is relatively large, the manufacturer may want to take only the first or second best design

into consideration. Second, the best design needs three different suppliers, while the second best

design only uses two. Therefore, if the decision makers prefer to manage fewer suppliers, which

may reduce the indirect cost of the supplier, then they may want to choose the second best design

rather than the best design. Third, the only difference between the best and the second design

comes from RAM. If the price of supplier-A drops ten dollars or more, then the RAM from

supplier-A becomes less expensive than those from supplier-C, and then it becomes part of the

best solution. Therefore, supplier-A may want to reduce the price by more than ten dollars to gain

additional businesses.

Table 5-4. Feasible Design Alternatives

Component The Best Design 2nd Best Design 3rd Best Design 4th Best Design

CPU A: Socket 370 A: Socket 370 A: Socket 370 B: Socket 462

HDD A: IDE A: IDE B: SCSI B: SCSI

RAM C: DIMM A: DIMM A: DIMM B: SIMM

Power A: 110V A: 110V B: 110V A: 110V

Mother B/D B: DualBIOS B: DualBIOS A: DualBIOS C: DualBIOS

Price $580 $590 $650 $650

This case study shows how the proposed cyberinfrastructure-based framework for modular

product design can be useful for online assemble-to-order PC makers. The Internet allows

suppliers from all over the world to publish their components to manufacturer design repositories,

allowing for maximal use of global resources. The machine-readable representation of

www.manaraa.com

84

components facilitates the identification of proper components as well as the automation of

product design. In the next chapter, we summarize and conclude this research with discussions

about the contributions of this research and future work.

www.manaraa.com

85

Chapter 6

Conclusions and Future Research Plan

The Internet has changed not only our daily lives but also business paradigms. Web

services play a central role in the World Wide Web that runs on the Internet. This research has

developed a solution framework for semantic Web service composition, which is one of the key

features of commercial Web services. The main objectives of this research are as follows:

1) Development of a mathematical solution framework to obtain the optimal

solution for Web service composition;

2) Development of semantics-processing mechanisms for Web service composition;

3) Development of k-best solution methods for Web service composition.

In this chapter, we present a summary of the research, scholarly contributions based on

these objectives, and a discussion of future research topics.

6.1 Research Summary

In this research, a mathematical solution framework that guarantees the optimal solution

for Web service composition was introduced. The mathematical framework considers not only

functional requirements but also QoS aspects of Web service composition. Furthermore, the

framework can incorporate semantics-processing mechanisms into its mathematical formulation.

The proposed approach guarantees both the syntactic and semantic optimality of the composition

solutions .

Finally, a k-best solution method for Web service composition was presented. The use of

k-best solutions provides a holistic view of the Web service composition solution space rather

than a myopic view which focuses only on the optimal solution. Knowing k-best solutions and the

www.manaraa.com

86

summary statistics among them (such as the range of objective values) provides a broader view

when composing Web services.

6.2 Contributions

6.2.1 Development of an optimal solution framework

The proposed mathematical framework for Web service composition can incorporate not

only functional requirements but also QoS (quality of service) aspects into its formulation, so that

the framework is guaranteed to generate a functionally-working solution that is optimal in terms

of the QoS goals of Web service users, such as lowest cost or shortest time. As Web services

become commercialized, the preferences of individual users will be the main objectives of Web

service composition, similar to the trend of mass customization in product design. Therefore, we

expect that our framework will play a significant role in providing customized Web service

composition solutions to individual users in the near future.

The ability to take parameters into consideration will contribute to finding more precise

composition solutions, as compared to other methods which focus at the operation level. In

addition, the proposed optimal framework can significantly contribute to the identification of the

best composition solution during the Web service design stage, when most composition takes

place. Furthermore, the proposed optimal approach is expected to provide a guideline for

evaluating the performance of heuristic approaches.

www.manaraa.com

87

6.2.2 Consideration of semantic relationships

Semantic issues have recently become challenging aspects of Web service composition

because they are ingrained in the problem. The proposed framework is capable of incorporating

semantic relationships among Web service parameters into its mathematical formulation, which

leads to generation of the optimal solution. The optimal solution considering semantics is superior

to syntactic optimal solutions because of the broader solution space.

The major contribution of the proposed framework in terms of semantic issues is the

development of a general formulation for hierarchical relationships among Web service

parameters. The parameters of Web services are defined in XML and XML Schema, which

follow the state-of-the-art object-oriented paradigm in which inheritance relationships are

described in a hierarchical way. Therefore, the proposed framework can formulate any data

structure that follows the object-oriented paradigm.

6.2.3 Generation of k-best solutions

Identifying k-best design alternatives provides a holistic view of the Web service

composition solution space, rather than a myopic view that is focused on only the optimal

solution. Optimal solution approaches have been criticized because they disregard other good

alternatives. For example, when we search for a hotel on expedia.com, it returns a list of choices

rather than offering only the best hotel. Diverse options provide not only more freedom, but also

more information for users. Therefore, the proposed k-best solution methods will help Web

service users make better decisions by providing more detailed information on the solution space.

www.manaraa.com

88

6.3 Future Research

Many aspects need to be considered in order to improve Web service composition.

Regarding future research topics, we suggest two interesting issues that have not been considered

and two potential applications of the proposed framework in this section.

6.3.1 Interactive Web service composition

The consideration of QoS (quality of service) in this research has provided an excellent

way of incorporating inputs from users into Web service composition processes. Using the

proposed framework, users can define their own objectives and obtain the optimal composition

solution in terms of those objectives. While the proposed framework can consider user inputs in

the objective functions and constraints of the mathematical formulations, an interactive way of

obtaining user inputs will help to further reflect the preferences of users by taking their immediate

feedback into consideration. As Web services become commercialized, interactive Web service

composition is expected to be a key feature that Web service providers should provide for users.

6.3.2 Modular product design

An application of the proposed framework to modular product design is discussed in

Chapter 5. In the application, Web services and the resulting compositions are viewed as being

analogous to modules and product assembly. Modules are part of a product as Web services are

part of a composition solution. A key consideration for modules and Web services is whether or

not they are comprised of physical objects. Chapter 5 proposes a mathematical approach to

modular product design as well as a mechanism for describing modules in a machine-readable

way. The approach successfully generates a functionally-working solution that is optimal in terms

www.manaraa.com

89

of design objectives, such as total cost. However, the approach does not consider the physical

aspects of modules (i.e., geometric constraints). Since both aesthetic design and size are

important in product design, the consideration of geometric constraints is expected to contribute

to product design practices.

6.3.3 Agent-based Web service composition

UDDI (Universal Description, Discovery, and Integration) [7] is a central registry of Web

services which could be vertically categorized. For example, getHotel or getRentalCar Web

services could be provided by travel service providers; getHospital or getBloodbank Web services

could be provided by medical service providers. Each industry has its own business processes

with specific terminology and jargon that other industries may not always understand. Multi-

agent technology [99, 100] could contribute to such cases by leveraging distributed computing

capabilities based on communications and intelligence. Each agent could be specialized by a

company or in other ways. The specialized agents could accumulate knowledge in an assigned

area and make intelligent decisions. Through communications, they could share their knowledge

with other agents or relay decisions, or local optimums, to other agents. In addition, while the

proposed framework can consider semantic issues, if a specialized agent for each category of

Web services existed, they would be able to understand the semantics of terms frequently used in

the assigned category.

6.3.4 Collaborative medical services

The healthcare industry has been one of the industries in which collaborative activities

among service providers are hardly found. Healthcare Information Technology (HIT) has been

www.manaraa.com

90

recognized as an enabler for healthcare collaboration [101]. Although HIT starts from local

integration, such as the electronic medical record, computerized physician order entry, and

decision support systems that integrate and improve access to health- and patient-related data

[102], HIT is evolving toward global integration, called HIT Networks [103] to achieve the

exchange of information among providers, insurers, and patients.

The proposed framework of this research is expected to contribute to facilitating

collaborative medical services in the healthcare industry. The key connection between

collaborative medical services and Web services is that medical services can be represented as

Web services in machine-readable or even machine-understandable form. In this way, as in Web

services that have been shared by Internet users, medical services can be shared efficiently by

healthcare service users. The proposed framework, based on Service Oriented Architecture, is

expected to contribute to such collaborative healthcare services.

www.manaraa.com

91

Appendix A:

An Example of IP Formulation for Web Service Composition

The following formulation is based on the example shown in Figure 1-3.

{ , , , }W A B C D=

{ , , , , , , , , , , , }P a b c d e f g h i j k l=

{ , , , , , , , , , }InP a b c d e f g h i j=

{ , , , , , , }OutP f g h i j k l=

{ , , , , }InitialP a b c d e=

{ , , }GoalP f j l=

{ }input
aW A= , { }input

bW A= , { }input
cW B= , { }input

dW B= , { }input
eW B= , { , }input

fW C D= ,

{ , }input
gW C D= , { }input

hW C= , { }input
iW C= , input

jW = ∅ , input
kW = ∅ , input

lW = ∅

output
pW = ∅ , output

bW = ∅ , output
cW = ∅ , output

dW = ∅ , output
eW = ∅ , { }output

fW A= , { }output
gW B= ,

{ }output
hW B= , { }output

iW B= , { }output
jW D= , { }output

kW D= , { }output
lW C=

Let 3S = .

Total number of constraints:

3 3input output
Goal In p Out p

p p
P P S P W P W S P

⋅ + + ⋅ + + + + ⋅ ⋅

∑ ∑

= ()3 12 3 3 10 12 7 7 3 3 12 255⋅ + + ⋅ + + + + ⋅ ⋅ =

Total number of variables: 3 3 3 12 3 4 120S P S W⋅ ⋅ + ⋅ = ⋅ ⋅ + ⋅ =

www.manaraa.com

92

A.1 Objective Function

, ,1 ,2 ,3 ,1 ,2 ,3 ,1 ,2 ,3 ,1 ,2 ,3w s A A A B B B C C C D D D
w W s S

Minimize y y y y y y y y y y y y y
∈ ∈

= + + + + + + + + + + +∑∑

A.2 Constraints

(1) Initial conditions:

Number of constraints = 3 3 12 36P⋅ = ⋅ =

,0 ,0 ,01, 0output input known-unused
a a ax x x= = = , ,0 ,0 ,01, 0output input known-unused

b b bx x x= = = ,

,0 ,0 ,01, 0output input known-unused
c c cx x x= = = , ,0 ,0 ,01, 0output input known-unused

d d dx x x= = = ,

,0 ,0 ,01, 0output input known-unused
e e ex x x= = = .

,0 ,0 ,0 0input output known-unused
f f fx x x= = = , ,0 ,0 ,0 0input output known-unused

g g gx x x= = = ,

,0 ,0 ,0 0input output known-unused
h h hx x x= = =

,0 ,0 ,0 0input output known-unused
i i ix x x= = = , ,0 ,0 ,0 0input output known-unused

j j jx x x= = = ,

,0 ,0 ,0 0input output known-unused
k k kx x x= = =

,0 ,0 ,0 0input output known-unused
l l lx x x= = =

(2) Goal conditions:

Number of constraints = 3GoalP =

www.manaraa.com

93

,3 ,3 ,3 1output known-unused input
f f fx x x+ + ≥ , ,3 ,3 ,3 1output known-unused input

j j jx x x+ + ≥ , ,3 ,3 ,3 1output known-unused input
l l lx x x+ + ≥

(3) Web services invocation constraints:

Number of constraints = 3(10 12 7 7)input output
In p Out p

p p
S P W P W

+ + + = + + +

∑ ∑ =104

Stage 1:

Output : All Web services where parameter p is used.

* ,1 ,1
output

A fy x≥ , ,1 ,1
output

B gy x≥ , ,1 ,1
output

B hy x≥ , ,1 ,1
output

B iy x≥ , ,1 ,1
output

C ly x≥ , ,1 ,1
output

D jy x≥ , ,1 ,1
output

D ky x≥

Output : Each Web service where parameter p is used.

* ,1 ,1
output

A fy x≤ , ,1 ,1
output

B gy x≤ , ,1 ,1
output

B hy x≤ , ,1 ,1
output

B iy x≤ , ,1 ,1
output

C ly x≤ , ,1 ,1
output

D jy x≤ , ,1 ,1
output

D ky x≤

Input : All Web services where parameter p is used.

* ,1 ,1
input

A ay x≥ , ,1 ,1
input

A by x≥ , ,1 ,1
input

B cy x≥ , ,1 ,1
input

B dy x≥ , ,1 ,1
input

B ey x≥ , ,1 ,1 ,1
input

C D fy y x+ ≥ ,

,1 ,1 ,1
input

C D gy y x+ ≥ , ,1 ,1
input

C hy x≥ , ,1 ,1
input

C iy x≥ , ,1 ,1
input

C jy x≥

Input : Each Web service where parameter p is used.

* ,1 ,1
input

A ay x≤ , ,1 ,1
input

A by x≤ , ,1 ,1
input

B cy x≤ , ,1 ,1
input

B dy x≤ , ,1 ,1
input

B ey x≤ , ,1 ,1
input

C fy x≤ , ,1 ,1
input

D fy x≤

,1 ,1
input

C gy x≤ , ,1 ,1
input

D gy x≤ ,1 ,1
input

C hy x≤ , ,1 ,1
input

C iy x≤ , ,1 ,1
input

C jy x≤

www.manaraa.com

94

Stage 2:

Output : All Web services where parameter p is used.

* ,2 ,2
output

A fy x≥ , ,2 ,2
output

B gy x≥ , ,2 ,2
output

B hy x≥ , ,2 ,2
output

B iy x≥ , ,2 ,2
output

C ly x≥ , ,2 ,2
output

D jy x≥ ,

,2 ,2
output

D ky x≥

Output : Each Web service where parameter p is used.

* ,2 ,2
output

A fy x≤ , ,2 ,2
output

B gy x≤ , ,2 ,2
output

B hy x≤ , ,2 ,2
output

B iy x≤ , ,2 ,2
output

C ly x≤ , ,2 ,2
output

D jy x≤ ,

,2 ,2
output

D ky x≤

Input : All Web services where parameter p is used.

* ,2 ,2
input

A ay x≥ , ,2 ,2
input

A by x≥ , ,2 ,2
input

B cy x≥ , ,2 ,2
input

B dy x≥ , ,2 ,2
input

B ey x≥ , ,2 ,2 ,2
input

C D fy y x+ ≥ ,

,2 ,2 ,2
input

C D gy y x+ ≥ , ,2 ,2
input

C hy x≥ , ,2 ,2
input

C iy x≥ , ,2 ,2
input

C jy x≥

Input : each Web service that parameter p is used.

* ,2 ,2
input

A ay x≤ , ,2 ,2
input

A by x≤ , ,2 ,2
input

B cy x≤ , ,2 ,2
input

B dy x≤ , ,2 ,2
input

B ey x≤ , ,2 ,2
input

C fy x≤ , ,2 ,2
input

D fy x≤

,2 ,2
input

C gy x≤ , ,2 ,2
input

D gy x≤ ,2 ,2
input

C hy x≤ , ,2 ,2
input

C iy x≤ , ,2 ,2
input

C jy x≤

Stage 3 :

Output : All Web services where parameter p is used.

* ,3 ,3
output

A fy x≥ , ,3 ,3
output

B gy x≥ , ,3 ,3
output

B hy x≥ , ,3 ,3
output

B iy x≥ , ,3 ,3
output

C ly x≥ , ,3 ,3
output

D jy x≥ ,

,3 ,3
output

D ky x≥

Output : Each Web service where parameter p is used.

www.manaraa.com

95

* ,3 ,3
output

A fy x≤ , ,3 ,3
output

B gy x≤ , ,3 ,3
output

B hy x≤ , ,3 ,3
output

B iy x≤ , ,3 ,3
output

C ly x≤ , ,3 ,3
output

D jy x≤ ,

,3 ,3
output

D ky x≤

Input : All Web services where parameter p is used.

* ,3 ,3
input

A ay x≥ , ,3 ,3
input

A by x≥ , ,3 ,3
input

B cy x≥ , ,3 ,3
input

B dy x≥ , ,3 ,3
input

B ey x≥ , ,3 ,3 ,3
input

C D fy y x+ ≥ ,

,3 ,3 ,3
input

C D gy y x+ ≥ , ,3 ,3
input

C hy x≥ , ,3 ,3
input

C iy x≥ , ,3 ,3
input

C jy x≥

Input : Each Web service where parameter p is used.

* ,3 ,3
input

A ay x≤ , ,3 ,3
input

A by x≤ , ,3 ,3
input

B cy x≤ , ,3 ,3
input

B dy x≤ , ,3 ,3
input

B ey x≤ , ,3 ,3
input

C fy x≤ , ,3 ,3
input

D fy x≤

,3 ,3
input

C gy x≤ , ,3 ,3
input

D gy x≤ ,3 ,3
input

C hy x≤ , ,3 ,3
input

C iy x≤ , ,3 ,3
input

C jy x≤

(4) Non-concurrency constraints

Number of constraints = 2 2 3 12 72S P⋅ ⋅ = ⋅ ⋅ =

Stage 1:

,1 ,1 1output known-unused
a ax x+ ≤ , ,1 ,1 1output known-unused

b bx x+ ≤ , ,1 ,1 1output known-unused
c cx x+ ≤ ,

,1 ,1 1output known-unused
d dx x+ ≤

,1 ,1 1output known-unused
e ex x+ ≤ , ,1 ,1 1output known-unused

f fx x+ ≤ , ,1 ,1 1output known-unused
g gx x+ ≤ ,

,1 ,1 1output known-unused
h hx x+ ≤

,1 ,1 1output known-unused
i ix x+ ≤ , ,1 ,1 1output known-unused

j jx x+ ≤ , ,1 ,1 1output known-unused
k kx x+ ≤ ,

,1 ,1 1output known-unused
l lx x+ ≤

www.manaraa.com

96

,1 ,1 1input known-unused
a ax x+ ≤ , ,1 ,1 1input known-unused

b bx x+ ≤ , ,1 ,1 1input known-unused
c cx x+ ≤ , ,1 ,1 1input known-unused

d dx x+ ≤

,1 ,1 1input known-unused
e ex x+ ≤ , ,1 ,1 1input known-unused

f fx x+ ≤ , ,1 ,1 1input known-unused
g gx x+ ≤ , ,1 ,1 1input known-unused

h hx x+ ≤

,1 ,1 1input known-unused
i ix x+ ≤ , ,1 ,1 1input known-unused

j jx x+ ≤ , ,1 ,1 1input known-unused
k kx x+ ≤ , ,1 ,1 1input known-unused

l lx x+ ≤

Stage 2:

,2 ,2 1output known-unused
a ax x+ ≤ , ,2 ,2 1output known-unused

b bx x+ ≤ , ,2 ,2 1output known-unused
c cx x+ ≤ ,

,2 ,2 1output known-unused
d dx x+ ≤

,2 ,2 1output known-unused
e ex x+ ≤ , ,2 ,2 1output known-unused

f fx x+ ≤ , ,2 ,2 1output known-unused
g gx x+ ≤ ,

,2 ,2 1output known-unused
h hx x+ ≤

,2 ,2 1output known-unused
i ix x+ ≤ , ,2 ,2 1output known-unused

j jx x+ ≤ , ,2 ,2 1output known-unused
k kx x+ ≤ ,

,2 ,2 1output known-unused
l lx x+ ≤

,2 ,2 1input known-unused
a ax x+ ≤ , ,2 ,2 1input known-unused

b bx x+ ≤ , ,2 ,2 1input known-unused
c cx x+ ≤ , ,2 ,2 1input known-unused

d dx x+ ≤

,2 ,2 1input known-unused
e ex x+ ≤ , ,2 ,2 1input known-unused

f fx x+ ≤ , ,2 ,2 1input known-unused
g gx x+ ≤ , ,2 ,2 1input known-unused

h hx x+ ≤

,2 ,2 1input known-unused
i ix x+ ≤ , ,2 ,2 1input known-unused

j jx x+ ≤ , ,2 ,2 1input known-unused
k kx x+ ≤ , ,2 ,2 1input known-unused

l lx x+ ≤

Stage 3:

,3 ,3 1output known-unused
a ax x+ ≤ , ,3 ,3 1output known-unused

b bx x+ ≤ , ,3 ,3 1output known-unused
c cx x+ ≤ ,

,3 ,3 1output known-unused
d dx x+ ≤

www.manaraa.com

97

,3 ,3 1output known-unused
e ex x+ ≤ , ,3 ,3 1output known-unused

f fx x+ ≤ , ,3 ,3 1output known-unused
g gx x+ ≤ ,

,3 ,3 1output known-unused
h hx x+ ≤

,3 ,3 1output known-unused
i ix x+ ≤ , ,3 ,3 1output known-unused

j jx x+ ≤ , ,3 ,3 1output known-unused
k kx x+ ≤ ,

,3 ,3 1output known-unused
l lx x+ ≤

,3 ,3 1input known-unused
a ax x+ ≤ , ,3 ,3 1input known-unused

b bx x+ ≤ , ,3 ,3 1input known-unused
c cx x+ ≤ , ,3 ,3 1input known-unused

d dx x+ ≤

,3 ,3 1input known-unused
e ex x+ ≤ , ,3 ,3 1input known-unused

f fx x+ ≤ , ,3 ,3 1input known-unused
g gx x+ ≤ , ,3 ,3 1input known-unused

h hx x+ ≤

,3 ,3 1input known-unused
i ix x+ ≤ , ,3 ,3 1input known-unused

j jx x+ ≤ , ,3 ,3 1input known-unused
k kx x+ ≤ , ,3 ,3 1input known-unused

l lx x+ ≤

(5) Sequence constraints

Number of constraints = 3 12 36S P⋅ = ⋅ =

Stage 1:

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
a a a a ax x x x x+ ≤ + + ,

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
b b b b bx x x x x+ ≤ + +

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
c c c c cx x x x x+ ≤ + + ,

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
d d d d dx x x x x+ ≤ + +

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
e e e e ex x x x x+ ≤ + + ,

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
f f f f fx x x x x+ ≤ + +

www.manaraa.com

98

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
g g g g gx x x x x+ ≤ + + ,

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
h h h h hx x x x x+ ≤ + +

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
i i i i ix x x x x+ ≤ + + ,

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
j j j j jx x x x x+ ≤ + +

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
k k k k kx x x x x+ ≤ + + ,

,1 ,1 ,0 ,0 ,0
input known-unused input output known-unused
l l l l lx x x x x+ ≤ + +

Stage 2:

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
a a a a ax x x x x+ ≤ + + ,

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
b b b b bx x x x x+ ≤ + +

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
c c c c cx x x x x+ ≤ + + ,

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
d d d d dx x x x x+ ≤ + +

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
e e e e ex x x x x+ ≤ + + ,

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
f f f f fx x x x x+ ≤ + +

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
g g g g gx x x x x+ ≤ + + ,

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
h h h h hx x x x x+ ≤ + +

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
i i i i ix x x x x+ ≤ + + ,

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
j j j j jx x x x x+ ≤ + +

www.manaraa.com

99

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
k k k k kx x x x x+ ≤ + + ,

,2 ,2 ,1 ,1 ,1
input known-unused input output known-unused
l l l l lx x x x x+ ≤ + +

Stage 3:

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
a a a a ax x x x x+ ≤ + + ,

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
b b b b bx x x x x+ ≤ + +

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
c c c c cx x x x x+ ≤ + + ,

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
d d d d dx x x x x+ ≤ + +

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
e e e e ex x x x x+ ≤ + + ,

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
f f f f fx x x x x+ ≤ + +

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
g g g g gx x x x x+ ≤ + + ,

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
h h h h hx x x x x+ ≤ + +

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
i i i i ix x x x x+ ≤ + + ,

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
j j j j jx x x x x+ ≤ + +

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
k k k k kx x x x x+ ≤ + + ,

,3 ,3 ,2 ,2 ,2
input known-unused input output known-unused
l l l l lx x x x x+ ≤ + +

www.manaraa.com

100

(6) Binary variables

Number of variables = 3 3 3 12 3 4 120S P S W⋅ ⋅ + ⋅ = ⋅ ⋅ + ⋅ =

, , ,, , {0,1} { , , , , , , , , , , , }, 1,2,3 .input output known-unused
p s p s p sx x x p P a b c d e f g h i j k l s∈ ∀ ∈ = ∈

, {0,1} { , , , }, 1,2,3w sy w W A B C D s∈ ∀ ∈ = ∈ .

A.3 Computation Results

CPLEX 10.1 (High Performance Group) found the optimal solution and took less than 0.01

seconds (255 constraints and 120 variables: 12 parameters and 4 Web services).

The optimal solution is: * * * *
,1 ,1 ,2 ,3 1A B D Cy y y y= = = = .

www.manaraa.com

101

Appendix B:

Sample files from Web Service Challenge 2008

B.1 Input WSDL File

A sample WSDL file is below. This file includes a detailed descripton of a Web service.

The file can include information of all Web services, or a file can include information of a Web

service. In the latter case, there exist multiple WSDL files.

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:service="http://www.ws-challenge.org/WSC08Services/" targetNamespace="http://www.ws-
challenge.org/WSC08Services/">
 <service name="serv904934656Service">
 <port binding="service:serv904934656SOAP" name="serv904934656Port">
 <soap:address location="http://www.unknownexamplehost.ukn/" />
 </port>
 </service>
 <binding name="serv904934656SOAP" type="service:serv904934656PortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="serv904934656Operation">
 <soap:operation soapAction="http://www.ws-challenge.org/serv904934656" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <portType name="serv904934656PortType">
 <operation name="serv904934656Operation">
 <input message="service:serv904934656RequestMessage" />
 <output message="service:serv904934656ResponseMessage" />
 </operation>
 </portType>
 <message name="serv904934656RequestMessage">
 <part element="service:ComplexElement0" name="ComplexElement0Part" />
 <part element="service:634753311" name="634753311Part" />
 </message>
 <message name="serv904934656ResponseMessage">
 <part element="service:ComplexElement1" name="ComplexElement1Part" />
 <part element="service:617921947" name="617921947Part" />
 <part element="service:2086384287" name="2086384287Part" />
 <part element="service:1987498920" name="1987498920Part" />
 </message>
</definitions>

www.manaraa.com

102

B.2 Input OWL File

A sample OWL file [27] is below. This file includes a detailed descripton of the

relationships among parameters.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" xmlns="http://www.ws-challenge.org/wsc08.owl#"
xmlns:owl="http://www.w3.org/2002/07/owl#" xml:base="http://www.ws-challenge.org/wsc08.owl">
 <owl:Ontology rdf:about="" />
 <owl:Class rdf:ID="con1988815758" />
 <owl:Class rdf:ID="con1226699739">
 <rdfs:subClassOf rdf:resource="#con1988815758" />
 </owl:Class>
 <owl:Class rdf:ID="con445535565">
 <rdfs:subClassOf rdf:resource="#con1226699739" />
 </owl:Class>
 <owl:Class rdf:ID="con1428646343">
 <rdfs:subClassOf rdf:resource="#con1226699739" />
 </owl:Class>
 <owl:Class rdf:ID="con1653328292">
 <rdfs:subClassOf rdf:resource="#con1226699739" />
 </owl:Class>
 <owl:Class rdf:ID="con664277597">
 <rdfs:subClassOf rdf:resource="#con1226699739" />
 </owl:Class>
 <owl:Class rdf:ID="con464583682">
 <rdfs:subClassOf rdf:resource="#con1226699739" />
 </owl:Class>
 <owl:Class rdf:ID="con772420247">
 <rdfs:subClassOf rdf:resource="#con1226699739" />
 </owl:Class>
 <owl:Class rdf:ID="con1830903175">
 <rdfs:subClassOf rdf:resource="#con445535565" />
 </owl:Class>
 <owl:Class rdf:ID="con2119691623">
 <rdfs:subClassOf rdf:resource="#con1428646343" />
 </owl:Class>
 <owl:Class rdf:ID="con241744282">
 <rdfs:subClassOf rdf:resource="#con1428646343" />
 </owl:Class>
 <owl:Class rdf:ID="con848610623">
 <rdfs:subClassOf rdf:resource="#con1428646343" />
 </owl:Class>
 <owl:Class rdf:ID="con302983909">
 <rdfs:subClassOf rdf:resource="#con1428646343" />
 </owl:Class>
</rdf:RDF>

www.manaraa.com

103

B.3 Input Query File

 Below is a sample of query files. A query file includes a composition request. A

composition request includes information of input paramters and goal parameters. This file is

written in XML [17].

 <?xml version="1.0" encoding="UTF-8" ?>
 <problemStructure>
 <task>
 <provided>
 <instance name="inst472782893" />
 <instance name="inst612055407" />
 <instance name="inst28128416" />
 <instance name="inst1867369562" />
 <instance name="inst474629664" />
 <instance name="inst1729323322" />
 <instance name="inst1376632380" />
 <instance name="inst1747959169" />
 <instance name="inst767307215" />
 </provided>
 <wanted>
 <instance name="inst684358734" />
 <instance name="inst400689885" />
 <instance name="inst433458293" />
 <instance name="inst1992305510" />
 </wanted>
 </task>
 <problemStructure>

www.manaraa.com

104

B.4 Output WSBPEL File

Below is a sample WSBPEL file [74]. This file includes the final result of Web service

composition. In other words, this file describes how to execute selected Web services in a certain

sequence.

<?xml version="1.0" encoding="UTF-8"?>
<bpel:process xmlns:bpel="http://schemas.xmlsoap.org/ws/2003/03/business-process/" xmlns:service="http://www.ws-
challenge.org/WSC08Services/" name="WSC08" targetNamespace="http://www.ws-
challenge.org/WSC08CompositionSolution/">
 <bpel:sequence name="main">
 <bpel:receive name="receiveQuery" portType="solutionProcess" variable="query" />
 <bpel:switch name="SolutionAlternatives">
 <bpel:case name="Alternative-Solution0">
 <bpel:sequence>
 <bpel:switch name="Alternative-Services">
 <bpel:case name="Execute-serv212250832Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv212250832Service" portType="service:serv212250832PortType"
operation="service:serv212250832Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv1667050675Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1667050675Service" portType="service:serv1667050675PortType"
operation="service:serv1667050675Operation" />
 </bpel:sequence>
 </bpel:case>
 </bpel:switch>
 <bpel:switch name="Alternative-Services">
 <bpel:case name="Execute-serv974366889Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv974366889Service" portType="service:serv974366889PortType"
operation="service:serv974366889Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv281683065Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv281683065Service" portType="service:serv281683065PortType"
operation="service:serv281683065Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv1736482908Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1736482908Service" portType="service:serv1736482908PortType"
operation="service:serv1736482908Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv1043799122Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1043799122Service" portType="service:serv1043799122PortType"
operation="service:serv1043799122Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv351115298Service">

www.manaraa.com

105

 <bpel:sequence>
 <bpel:invoke name="service:serv351115298Service" portType="service:serv351115298PortType"
operation="service:serv351115298Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv1805915141Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1805915141Service" portType="service:serv1805915141PortType"
operation="service:serv1805915141Operation" />
 </bpel:sequence>
 </bpel:case>
 </bpel:switch>
 <bpel:switch name="Alternative-Services">
 <bpel:case name="Execute-serv1113231355Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1113231355Service" portType="service:serv1113231355PortType"
operation="service:serv1113231355Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv420547531Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv420547531Service" portType="service:serv420547531PortType"
operation="service:serv420547531Operation" />
 </bpel:sequence>
 </bpel:case>
 </bpel:switch>
 <bpel:switch name="Alternative-Services">
 <bpel:case name="Execute-serv1875347374Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1875347374Service" portType="service:serv1875347374PortType"
operation="service:serv1875347374Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv1182663588Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1182663588Service" portType="service:serv1182663588PortType"
operation="service:serv1182663588Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv489979764Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv489979764Service" portType="service:serv489979764PortType"
operation="service:serv489979764Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv1944779607Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1944779607Service" portType="service:serv1944779607PortType"
operation="service:serv1944779607Operation" />
 </bpel:sequence>
 </bpel:case>
 </bpel:switch>
 <bpel:switch name="Alternative-Services">
 <bpel:case name="Execute-serv1252095821Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1252095821Service" portType="service:serv1252095821PortType"
operation="service:serv1252095821Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv559411997Service">

www.manaraa.com

106

 <bpel:sequence>
 <bpel:invoke name="service:serv559411997Service" portType="service:serv559411997PortType"
operation="service:serv559411997Operation" />
 </bpel:sequence>
 </bpel:case>
 </bpel:switch>
 <bpel:invoke name="service:serv2014211840Service" portType="service:serv2014211840PortType"
operation="service:serv2014211840Operation" />
 <bpel:invoke name="service:serv1321528054Service" portType="service:serv1321528054PortType"
operation="service:serv1321528054Operation" />
 <bpel:invoke name="service:serv628844230Service" portType="service:serv628844230PortType"
operation="service:serv628844230Operation" />
 <bpel:invoke name="service:serv2083644073Service" portType="service:serv2083644073PortType"
operation="service:serv2083644073Operation" />
 <bpel:switch name="Alternative-Services">
 <bpel:case name="Execute-serv1390960287Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1390960287Service" portType="service:serv1390960287PortType"
operation="service:serv1390960287Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv698276463Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv698276463Service" portType="service:serv698276463PortType"
operation="service:serv698276463Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv5592677Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv5592677Service" portType="service:serv5592677PortType"
operation="service:serv5592677Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv1460392520Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv1460392520Service" portType="service:serv1460392520PortType"
operation="service:serv1460392520Operation" />
 </bpel:sequence>
 </bpel:case>
 <bpel:case name="Execute-serv767708696Service">
 <bpel:sequence>
 <bpel:invoke name="service:serv767708696Service" portType="service:serv767708696PortType"
operation="service:serv767708696Operation" />
 </bpel:sequence>
 </bpel:case>
 </bpel:switch>
 </bpel:sequence>
 </bpel:case>
 </bpel:switch>
 </bpel:sequence>
</bpel:process>

www.manaraa.com

Bibliography

[1] Singh, M. P. and Huhns, M. N., 2005, Service-Oriented Computing: Semantics,

Processes, Agents, England, John Wiley & Sons.

[2] Erl, T., 2004, Service-Oriented Architecture: A Field Guide to Integrating XML and Web

Services, Upper Saddle River, NJ, Prentice Hall.

[3] W3C, "Simple Object Access Protocol 1.2," Retrieved July 15, 2010, from

http://www.w3.org/TR/soap/.

[4] XML-RPC.com, Retrieved July 15, 2010, from http://www.xmlrpc.com/.

[5] W3C, "XML Schema," Retrieved August 13, 2009, from

http://www.w3.org/XML/Schema.

[6] Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S., 2001, "Web Service

Description Language," Retrieved June 25, 2010, from http://www.w3.org/TR/wsdl.

[7] UDDI.XML.ORG, "Universal Description Discovery and Integration," Retrieved June

25, 2010, from uddi.xml.org.

[8] Papazoglou, M. P., 2008, Web Services: Principles and Technology, Prentice Hall.

[9] Oh, S.-C., Lee, D. and Kumara, S., 2007, "WSPR: an Effective and Scalable Web Service

Composition Algorithm," International Journal of Web Services Research, 4(1).

[10] Gu, Z., Xu, B. and Li, J., 2007, "Inheritance-Aware Document-Driven Service

Composition", IEEE International Conference on E-Commerce Technology and on

Enterprise Computing, E-Commerce, and E-Services, Tokyo, Japan, pp. 513-516.

[11] Oh, S.-C., Yoo, J.-W., Kil, H., Lee, D. and Kumara, S., 2007, "Semantic Web-Service

Discovery and Composition Using Flexible Parameter Matching", IEEE International

http://www.w3.org/TR/soap/�
http://www.xmlrpc.com/�
http://www.w3.org/XML/Schema�
http://www.w3.org/TR/wsdl�

www.manaraa.com

108

Conference on E-Commerce Technology and on Enterprise Computing, E-Commerce,

and E-Services, Tokyo, Japan, pp. 533-536.

[12] Oh, S.-C., Lee, D. and Kumara, S., 2008, "Effective Web Service Composition in Diverse

and Large-Scale Service Networks," IEEE Transactions on Services Computing, 1(1), pp.

15-32.

[13] Rao, J. and Su, X., 2005, "A Survey of Automated Web Service Composition Methods",

Lecture Notes in Computer Science, 3387, pp. 43-54.

[14] Yoo, J., Kumara, S., Lee, D. and Oh, S.-C., 2008, "A Web Service Composition

Framework Based on Integer Programming with Non-Functional Objectives and

Constraints", IEEE International Conference on E-Commerce Technology and on

Enterprise Computing, E-Commerce, and E-Services, Washington, DC, pp. 347 - 350.

[15] Schach, S., 2006, Object-Oriented and Classical Software Engineering, McGraw-Hill.

[16] Berners-Lee, T., Hendler, J. and Lassila, O., 2001, The Semantic Web, Scientific

American.

[17] W3C, "eXtensible Markup Language (XML)," Retrieved August 13, 2009, from

http://www.w3.org/XML/.

[18] W3C, "Hypertext Markup Language (HTML)," Retrieved June 23, 2010, from

http://www.w3.org/html/.

[19] W3C, "XML specification DTD," Retrieved July 15, 2010, from

http://www.w3.org/XML/1998/06/xmlspec.dtd.

[20] W3C, "Resource Description Framework (RDF)," Retrieved June 23, 2010, from

http://www.w3.org/RDF/.

[21] IETF, "Uniform Resource Identifiers (URI): Generic Syntax," Retrieved July 15, 2010,

from http://www.ietf.org/rfc/rfc2396.txt.

http://www.w3.org/XML/�
http://www.w3.org/html/�
http://www.w3.org/XML/1998/06/xmlspec.dtd�
http://www.w3.org/RDF/�
http://www.ietf.org/rfc/rfc2396.txt�

www.manaraa.com

109

[22] RFIDJournal.com, "Radio Frequency Identification," Retrieved July 15, 2010, from

http://www.rfidjournal.com/.

[23] Brock, D. and Cummins, C., 2003, "EPC Tag Data Specification", MIT Auto-ID Center

White Paper, Cambridge, Massachusetts Institute of Technology.

[24] GS1, "Global Standards One," Retrieved June 23, 2010, from http://www.gs1.org/.

[25] W3C, "RDF Schema," Retrieved June 23, 2010, from http://www.w3.org/TR/rdf-

schema/.

[26] W3C, "World Wide Web Consortium (W3C)," Retrieved July 15, 2010, from

http://www.w3.org/.

[27] W3C, "Web Ontology Language (OWL)," Retrieved June 23, 2010, from

http://www.w3.org/TR/owl-features/.

[28] Nilsson, N. J., 1998, Artificial Intelligence: A New Synthesis, San Francisco, CA, Morgan

Kaufmann Publishers.

[29] Bylander, T., 1994, "The Computational Complexity of Propositional STRIPS Planning,"

Artificial Intelligence, 69(1-2), pp. 165-204.

[30] Ghallab, M., Nau, D. and Traverso, P., 2004, Automated Planning: theory and practice,

Morgan Kaufmann Publisher.

[31] Oh, S.-C., Lee, D. and Kumara, S., 2005, "A Comparative Illustration of AI Planning-

based Web Services Composition," ACM SIGecom Exchanges, 5(5), pp. 1-10.

[32] Kil, H., Nam, W. and Lee, D., 2008, "Type-Aware Web Service Composition Using

Boolean Satisfiability Solver", IEEE Joint Conference on E-Commerce Technology and

Enterprise Computing, E-Commerce and E-Services, Washington D.C., pp. 331-334.

[33] McIlraith, S. and Son, T. C., 2002, "Adapting Golog for composition of Semantic Web

services", International Conference on Principles of Knowledge Representation and

Reasoning, Toulouse, France, pp. 482-493.

http://www.rfidjournal.com/�
http://www.gs1.org/�
http://www.w3.org/TR/rdf-schema/�
http://www.w3.org/TR/rdf-schema/�
http://www.w3.org/�
http://www.w3.org/TR/owl-features/�

www.manaraa.com

110

[34] McIlraith, S., Son, T. C. and Zeng, H., 2001, "Semantic Web Services," IEEE Intelligent

Systems, 16(2), pp. 46-53.

[35] Narayanan, S. and McIlraith, S., 2002, "Simulation, Verification and Automated

Composition of Web Service", International World Wide Web Conference, Honolulu,

Hawaii, pp. 77-88.

[36] De Giacomo, G., Lesperance, Y. and Levesque, H. J., 2000, "ConGolog, a concurrent

programming language based on the situation calculus," Artificial Intelligence, 121(1-2),

pp. 109-169.

[37] Levesque, H. J., Reiter, R., Lesperance, Y., Lin, F. and Scherl, R. B., 1997, "Golog: A

Logic Programming Language for Dynamic Domains," Journal of Logic Programming,

31(1-3), pp. 59-83.

[38] Rao, J., Kungas, P. and Matskin, M., 2003, "Application of Linear Logic to Web Service

Composition", International Conference on Web Services, Las Vegas, NV, pp. 3-9.

[39] Vossen, T., Ball, M., Lotem, A. and Nau, D., 1999, "On the Use of Integer Programming

Models in AI Planning", International Joint Conference on Artificial Intelligence,

Stockholm, Sweden, pp. 304-309.

[40] Vossen, T., Ball, M., Lotem, A. and Nau, D., 2000, "Applying Integer Programming to

AI Planning," The Knowledge Engineering Review, 15(1), pp. 85-100.

[41] Kautz, H. and Walser, J. P., 1999, "State-Space Planning by Integer Optimization", The

AAAI Conference on Artificial Intelligence, Orlando, FL, pp. 526-533.

[42] Kautz, H. and Walser, J. P., 2000, "Integer Optimization Models of AI Planning

Problems," The Knowledge Engineering Review, 15(1), pp. 101-117.

[43] Van den Briel, M. and Kambhampati, S., 2005, "Optiplan: Unifying IP-based and Graph-

based Planning," Journal of Artificial Intelligence Research, 24(1), pp. 919-931.

www.manaraa.com

111

[44] Van den Briel, M., Vossen, T. and Kambhampati, S., 2005, "Reviving Integer

Programming Approaches for AI Planning: A Branch-and-Cut Framework",

International Conference on Automated Planning and Scheduling, pp. 310-319.

[45] Al-Rafai, A. I., 1993, A Priori Interactive Methods for Multiple Objective Linear

Programming Problems, Ph.D. Dissertation, Department of Industrial Engineering, The

University of Oklahoma.

[46] Klein, D. and Hannan, E., 1982, "An Algorithm for the Multiple Objective Integer Linear

Programming Problem," European Journal of Operational Research, 9(4), pp. 378-385.

[47] Berbner, R., Spahn, M., Repp, N., Heckmann, O. and Steinmetz, R., 2006, "Heuristics for

QoS-aware Web Service Composition", IEEE International Conference on Web Services,

Chicago, IL, pp. 72-82.

[48] Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J. and Chang, H., 2004,

"QoS-Aware Middleware for Web Services Composition," IEEE Transactions on

Software Engineering, 30(5), pp. 311-327.

[49] Kritikos, K. and Plexousakis, D., 2009, "Mixed-Integer Programming for QoS-Based

Web Service Matchmaking," IEEE Transactions on Services Computing, 2(2), pp. 122-

139.

[50] Ardagna, D. and Pernici, B., 2006, "Global and Local QoS Guarantee in Web Service

Selection," Lecture Notes in Computer Science, 3812, pp. 32-46.

[51] Medjahed, B., Bouguettaya, A. and lmagarmid, A. K., 2003, "ComposingWeb services

on the Semantic Web," The VLDB Journal, 12, pp. 333-351.

[52] Pollock, J. T. and Hodgson, R., 2004, Adaptive Information, Hoboken, New Jersey,

Wiley.

www.manaraa.com

112

[53] Sirin, E., Hendler, J. and Parsia, B., 2003, "Semi-Automatic Composition of Web

Services Using Semantic Descriptions", International Conference on Enterprise

Information Systems Angers, France, pp. 17-24.

[54] Aiello, M., Platzer, C., Rosenberg, F., Tran, H., Vasko, M. and Dustdar, S., 2006, "Web

Service Indexing for Efficient Retrieval and Composition", IEEE International

Conference on E-Commerce Technology and the 3rd IEEE International Conference on

Enterprise Computing, E-Commerce, and E-Services, Palo Alto, CA, pp. 63-65.

[55] Gu, Z., Li, J. and Xu, B., 2008, "Automatic Service Composition Based on Enhanced

Service Dependency Graph", IEEE International Conference on Web Services, Beijing,

China, pp. 246 - 253.

[56] Oh, S.-C., 2006, Effective Web-Service Composition in Diverse and Large-Scale Service

Networks, Ph.D. Dissertation, Department of Industrial & Manufacturing Engineering,

The Pennsylvania State University.

[57] Yan, Y., Xu, B., Gu, Z. and Luo, S., 2009, "A QoS-Driven Approach for Semantic

Service Composition", IEEE Conference on Commerce and Enterprise Computing,

Vienna, Austria, pp. 523-526

[58] Chen, Z., Wang, H. and Pan, P., 2009, "An Approach to Optimal Web Service

Composition Based on QoS and User Preferences", International Joint Conference on

Artificial Intelligence, Pasadena, CA, pp. 96-101.

[59] Blake, M. B., Cheung, W. and Wombacher, A., 2007, "Web Services Discovery and

Composition Systems," International Journal of Web Services Research, 4(1), pp. 3-8.

[60] Zhang, R. and Zhang, L. J., 2005, "Web Services Quality Testing," International Journal

of Web Services Research, 2(2), pp. 1-4.

[61] Salkin, H. M. and Mathur, K., 1989, Foundations of Integer Programming, North-

Holland, Elsevier.

www.manaraa.com

113

[62] Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D., 2004, Linear Programming and Network

Flows, Hoboken, NJ, Wiley.

[63] Brucker, P. J. and Hamacher, H. W., 1989, "K-Optimal Solution Sets for Some

Polynomially Solvable Scheduling Problems," European Journal of Operational

Research, 41, pp. 194-202.

[64] Hamacher, H. W., 1985, "k-Best Solutions To Combinatorial Optimization Problems,"

Annals of Operations Research, 4(6), pp. 123-143.

[65] Hamacher, H. W., 1995, "A Note on K Best Network Flows," Annals of Operations

Research, 57, pp. 65-72.

[66] Hamacher, H. W., Picard, J.-C. and Queyranne, M., 1984, "Ranking the Cuts and Cut-

sets of a Network," Annals of Discrete Applied Mathematics, 19, pp. 183-200.

[67] Hamacher, H. W., Picard, J.-C. and Queyranne, M., 1984, "On Finding the K Best Cuts

in a Network " Operations Research Letters, 2(6), pp. 303-305.

[68] Lawler, E. L., 1972, "A Procedure for Computing the K Best Solutions to Discrete

Optimization Problems and Its Application to the Shortest Path Problem," Management

Science, 18(7), pp. 401-405.

[69] Murty, K. G., 1968, "An Algorithm for Ranking All the Assignments in Increasing Order

of Cost," Operations Research, 16(3), pp. 682-687.

[70] Ravindran, A., 2008, Operations Research and Management Science Handbook, Boca

Raton, FL, CRC Press.

[71] Saaty, T. L., 1986, "Axiomatic Foundation of the Analytic Hierarchy Process,"

Management Science, 32(7), pp. 841-855.

[72] Charnesa, A. and Cooperb, W. W., 1977, "Goal Programming and Multiple Objective

Optimizations: Part 1," European Journal of Operational Research, 1(1), pp. 39-54.

www.manaraa.com

114

[73] WSC2008, 2008, "Web Service Challenge (WSC)," Retrieved August 20, 2009, from

http://cec2008.cs.georgetown.edu/wsc08/.

[74] WSBPEL, "OASIS Web Services Business Process Execution Language," Retrieved

August 20, 2009.

[75] CPLEX, Retrieved August 20, 2009, from http://www.ilog.com/products/cplex/.

[76] Eppinger, S. D. and Chitkara, A. R., 2006, "The New Practice of Global Product

Development," MIT Sloan Management Review, 47(4), pp. 22-30.

[77] Hoffman, B. G., 2006, "Ford Retools Auto Design", The Detroit News. Dearborn, MI.

[78] Kotha, S., Olesen, D. G., Nolan, R. and Condit, P. M., 2005, "Boeing 787: Dreamliner,"

Harvard Business School Case Study.

[79] Atkins, D. E., Droegemeier, K. K., Feldman, S. I., Garcia-Molina, H., Klein, M. L.,

Messerschmitt, D. G., Messina, P., Ostriker, J. P. and Wright, M. H., 2003,

Revolutionizing Science and Engineering Through Cyberinfrastructure, National Science

Foundation, Arlington, VA.

[80] Szykman, S., 2002, "Architecture and Implementation of a Design Repository System",

ASME Design Engineering Technical Conferences & Computers and Information in

Engineering Conference, ASME DETC2002/CIE-34463, Montreal, Canada.

[81] Szykman, S., Racz, J. and Sriram, R., 1999, "The Representation of Function in

Computer-Based Design", ASME Design Engineering Technical Conferences - Design

Theory & Methodology Conference, DETC1999/DTM-8742, Las Vegas, NV.

[82] Szykman, S., Senfaute, J. and Sriram, R., 1999, "The Use of XML for Describing

Functions and Taxonomies in Computer-Based Design", ASME Design Engineering

Technical Conferences & Computers and Information in Engineering Conference,

DETC1999/CIE-9025, Las Vegas, NV.

http://cec2008.cs.georgetown.edu/wsc08/�
http://www.ilog.com/products/cplex/�

www.manaraa.com

115

[83] Szykman, S. and Sriram, R., 2006, "Design and Implementation of the Web-enabled

NIST Design Repository," ACM Transactions on Internet Technology, 6(1), pp. 85-116.

[84] Devanathan, S. and Ramani, K., 2007, "Combining Constraint Satisfaction and Non-

Linear Optimization to Enable Configuration Driven Design", International Conference

on Engineering Design, Paris, France.

[85] Bohm, M. R., Stone, R. B., Simpson, T. W. and Steva, E. D., 2008, "Introduction of a

Data Schema to Support a Design Repository," Computer-Aided Design, 40(7), pp. 801-

811.

[86] Bohm, M. R. and Stone, R. B., 2004, "Product Design Support: Exploring a Design

Repository System", ASME International Mechanical Engineering Congress &

Exposition, IMECE2004-61746, Anaheim, CA.

[87] Bohm, M. R., Stone, R. B. and Szykman, S., 2005, "Enhancing Virtual Product

Representations for Advanced Design Repository Systems," ASME Journal of Computing

and Information Science in Engineering, 5(4), pp. 360-372.

[88] Bryant, C. R., McAdams, D. A., Stone, R. B., Kurtoglu, T. and Campbell, M. I., 2005, "A

Computational Technique for Concept Generation", ASME Design Engineering

Technical Conferences & Computers and Information in Engineering Conference, ASME

DETC2005/CIE-85323, Long Beach, CA.

[89] Hirtz, J., Stone, R. B., McAdams, D., Szykman, S. and Wood, K., 2002, "A Functional

Basis for Engineering Design: Reconciling and Evolving Previous Efforts," Research in

Engineering Design, 13(2), pp. 65-82.

[90] Stone, R. B. and Wood, K., 2000, "Development of a Functional Basis for Design,"

ASME Journal of Mechanical Design, 122(4), pp. 359-370.

www.manaraa.com

116

[91] Bryant, C. R., McAdams, D. A., Stone, R. B., Kurtoglu, T. and Campbell, M. I., 2006, "A

Validation Study of an Automated Concept Generator Design Tool", ASME Design

Engineering Technical Conferences, DETC2006-99489, Philadelphia, PA.

[92] Campbell, M. I., Cagan, J. and Kotovsky, K., 2000, "Agent-Based Synthesis of

Electromechanical Design Configurations," ASME Journal of Mechanical Design, 122(1),

pp. 61-69.

[93] Campbell, M. I., Cagan, J. and Kotovsky, K., 2003, "The A-Design Approach to

Managing Automated Design Synthesis," Research in Engineering Design, 14(1), pp. 12-

24.

[94] Mittal, S., Dym, C. and Morjara, M., 1986, "PRIDE: An Expert System for the Design of

Paper Handling Systems," Computer, 19(7), pp. 102-114.

[95] Navinchandra, D., Sycara, K. P. and Narasimhan, S., 1991, "A Transformational

Approach to Case-Based Synthesis," AIEDAM, 5, pp. 31-45.

[96] Titus, N. and Ramani, K., 2005, "Design Space Exploration Using Constraint

Satisfaction", International Joint Conferences on Artificial Intelligence, Edinburgh,

Scotland, pp. 31-37.

[97] Pahl, G. and Beitz, W., 1996, Engineering Design: A Systematic Approach, London,

Springer-Verlag.

[98] Yoo, J., Oh, S.-C. and Kumara, S., 2008, "Application of Semantic Web Technology to

Scheduling Interoperability", Industrial Engineering Research Conference, Vancouver,

Canada.

[99] Wooldridge, M., 2002, An Introduction to MultiAgent Systems, West Sussex, UK, John

Wiley & Sons.

[100] Jennings, N. R. and Wooldridge, M., 1998, Agent Technology: Foundations, Applications,

and Markets, Springer.

www.manaraa.com

117

[101] Cohn, K. H., Berman, J., Chaiken, B., Green, D., Green, M., Morrison, D. and Scherger, J.

E., 2009, "Engaging Physicians to Adopt Healthcare Information Technology," Journal

of Healthcare Management, 54(5), pp. 291-300.

[102] Cohn, K. H., 2009, "Changing Physician Behavior Through Involvement and

Collaboration," Journal of Healthcare Management, 54(2), pp. 80-86.

[103] Orszag, P. R., 2008, "Evidence on the Costs and Benefits of Health Information

Technology," Retrieved July 24, 2010, from http://www.cbo.gov/ftpdocs/91xx/doc9168/

HealthITTOC.2.1.htm.

www.manaraa.com

118

VITA

John Jung-Woon Yoo

John Jung-Woon Yoo was born in Seoul, Korea on September 23, 1972. He grew up in

the northwestern part of Seoul, Eun-Pyung-Gu Yuk-Chon-Dong, where he attended Yuk-Chon

Elementary School, Dae-Sung Middle School, and Chung-Ahm High School. After high school,

he attended Korea University on a full scholarship, earning his Bachelor of Science degree in

Industrial Engineering in 1996. He earned his Master of Science degree in Industrial Engineering

in 1998 from Seoul National University. Before joining Pennsylvania State University, University

Park in State College, Pennsylvania for his Ph.D. degree in 2006, he spent six-and-a-half years

working professionally for ETRI (Electronics Telecommunications Research Institute) in Daejeon,

Korea (the largest national laboratory), and MJL Technology Ltd. in Seoul, Korea as a software

developer and designer. Throughout his Ph.D. program, he taught Penn State undergraduate

students as an instructor and worked as a teaching assistant for the Department of Industrial &

Manufacturing Engineering and as a research assistant for the Department of Information

Technology Services. Upon graduation in 2010, he accepted a tenure-track Assistant Professor

position in the Department of Industrial and Manufacturing Engineering & Technology at

Bradley University in Peoria, Illinois and started a new journey as a researcher and an educator.

	The Pennsylvania State University The Graduate School The Department of Industrial and Manufacturing Engineering
	A MATHEMATICAL FRAMEWORK FOR SEMANTIC WEB SERVICE COMPOSITION WITH APPLICATION TO MODULAR PRODUCT DESIGN
	A Dissertation in Industrial Engineering by Jung-Woon Yoo
	Doctor of Philosophy
	December 2010
	Introduction
	1.1 Introduction to Web Services
	1.1.1 SOAP (Simple Object Access Protocol)
	1.1.2 WSDL (Web Service Description Language)
	1.1.3 UDDI (Universal Description, Discovery, and Integration)

	1.2 Research Motivation
	1.3 Problem Statement
	1.4 Research Objectives and Contributions
	1.4.1 Optimal solution framework
	1.4.2 Semantics processing
	1.4.3 k-best solution methods

	1.5 Thesis Outline

	Problem Definition
	2.1 Syntactic Web Service Composition
	2.2 Semantic Web Service Composition
	2.2.1 XML (Extensible Markup Language)
	2.2.2 RDFS (Resource Description Framework Schema)
	2.2.3 Ontologies: OWL (Web Ontology Language)

	Literature Review
	3.1 Classification in Terms of Methodology
	3.1.1 Logic-based methods
	3.1.2 Mathematical programming methods
	3.1.3 Other methods

	3.2 Other Classifications
	3.2.1 Optimal versus heuristic solution approaches
	3.2.2 Semantic versus syntactic approaches
	3.2.3 Functional requirements versus quality of service concerns
	3.2.4 Parameter-level versus operation-level composition

	3.3 Summary

	Solution Methodology
	4.1 Integer Programming Formulation for Syntactic Web Service Composition
	4.1.1 Domain definition
	4.1.2 Problem classification
	4.1.3 Variable definition
	4.1.4 Formulation
	(1) Objective Function
	a. Initial knowledge constraints
	b. Goal knowledge constraints
	c. Web services invocation constraints
	d. Non-concurrency constraints
	e. Sequence constraints
	f. Knowledge increment constraints
	g. Redundant invocation prevention constraints
	h. Binary variables

	4.2 Cutting Plane Methods for k-Best Solutions to Web Service Composition
	4.2.1 A naïve cutting plane method
	4.2.2 General cutting planes for k-best solutions
	4.2.3 An improved cutting plane approach
	4.2.4 A cutting plane approach that negates previous solutions
	4.2.5 Elimination of only the current best solution
	4.2.6 Analysis of k-best solutions

	4.3 Integer Programming Formulation for Semantic Web Service Composition
	4.3.1 Variable definition
	4.3.2 Formulation
	(1) Initial constraints
	(2) Goal constraints
	(3) Semantics propagation constraints
	(4) Sequence constraints
	(5) Binary variables

	4.4 Experimental Results
	4.4.1 Consideration of quality-of-service attributes
	4.4.2 Consideration of semantics

	4.5 Solution Optimality
	4.6 System Architecture
	4.6.1 Bootstrapping
	4.6.2 Query processing
	4.6.3 Execution

	4.7 Summary

	An Application of Web Service Composition: Modular Product Design
	5.1 Motivation
	5.2 Background and Related Work
	5.3 Methodology
	5.3.1 Formal representation of components
	5.3.2 Modular product design as an AI planning problem
	5.3.3 Integer Programming (IP) formulation
	5.3.3.1 Domain Definition
	5.3.3.2 Variable Definition
	5.3.3.3 Formulation
	(1) Objective Function
	(2) Initial constraints
	(3) Goal constraints
	(4) Input/output constraints
	(5) Non-concurrency constraints
	(6) Sequence constraints
	(7) Functional model constraints
	(8) Binary variables

	5.3.4 SOA-based cyberinfrastructure to support global manufacturing

	5.4 Case Study
	(1) Initial constraints
	(2) Goal constraints
	(3) Input-output constraints
	(4) Non-concurrency constraints
	(5) Functional model constraints
	(6) Sequence constraints
	(7) The optimal solution

	Conclusions and Future Research Plan
	6.1 Research Summary
	6.2 Contributions
	6.2.1 Development of an optimal solution framework
	6.2.2 Consideration of semantic relationships
	6.2.3 Generation of k-best solutions

	6.3 Future Research
	6.3.1 Interactive Web service composition
	6.3.2 Modular product design
	6.3.3 Agent-based Web service composition
	6.3.4 Collaborative medical services

	Appendix A: An Example of IP Formulation for Web Service Composition
	A.1 Objective Function
	A.2 Constraints
	(1) Initial conditions:
	(2) Goal conditions:
	(3) Web services invocation constraints:
	Stage 1:
	Stage 2:
	Stage 3 :
	(4) Non-concurrency constraints
	Stage 1:
	Stage 2:
	Stage 3:
	(5) Sequence constraints
	Stage 1:
	Stage 2:
	Stage 3:
	(6) Binary variables

	A.3 Computation Results

	Appendix B: Sample files from Web Service Challenge 2008
	B.1 Input WSDL File
	B.2 Input OWL File
	B.3 Input Query File
	B.4 Output WSBPEL File

	Bibliography

